FOLIA
MUSEI
HISTORICO-
NATURALIS
BAKONYIENSIS
22-2005
A Bakonyi
Természettudományi Múzeum
Közleményei

Zirc, 2005
TARTALOM

GALAMBOS ISTVÁN:
Adatok a Bakony-hegység flórájához III. 7

KEVEY BALÁZS:
A Bakonyalja homokvidékének erdei II. Homoki erdeifenyvesek –
Festuco vaginatae-pinetum sylvestris Soó (1931) 1971 21

FAZEKAS IMRE:
Az ösküi (Bakony) dolomit lejtők és sziklagyepek lepkefaunája (Lepidoptera) 45

CSABA ZOLTÁN – MÓRA ARNOLD – BODA PÁL – CSER BALÁZS– MÁLNÁS KRISTÓF:
Contribution to the aquatic insect fauna of the northern part of the
Bakony mountains (Ephemeroptera, Coleoptera, Heteroptera and Trichoptera) 69

CSABA ZOLTÁN – SZÉL GYŐZŐ – KUTASI CSABA:
A Bakonyi Természettudományi Múzeum vízibogár-gyűjteménye
(Coleoptera: Hydradephaga és Hydrophiloidea) 101

ROZNER ISTVÁN:
Adatok a mindszentkállai Öreghegy bogárfaunájához (Insecta: Coleoptera) 113

PAPP JENŐ:
A Bakony-hegység gyilkosfürkész faunájának alapvetése
(Hymenoptera, Braconidae). VI. Helconinae, Brachistinae,
Cheloninae és Sigalphinae .. 145

TÓTH SÁNDOR:
A Kis-Balaton II. ütemének amfibikus kétszárnyú- (Diptera-) faunája,
a 2002-ben végzett vizsgálatok alapján 165
CONTENTS

GAHAMBOS ISTVÁN:
Data for the flora of Bakony mountains III.7

KEVEY BALÁZS:
Forests of the sandhill area of Bakonyalja. II. Festuco vaginatae-
Pinetum sylvestris Soó (1931) 197121

FAZEKAS IMRE:
Butterfly and moth (Lepidoptera) fauna of rupicolous pannonic
grasslands near Öskü (Bakony Mts., Hungary)45

CSABAI ZOLTÁN – MÓRA ARNOLD – BODA PÁL – CSER BALÁZS– MÁLNÁS KRISTÓF:
Contribution to the aquatic insect fauna of the northern part
of the Bakony mountains (Ephemeroptera, Coleoptera,
Heteroptera and Trichoptera) ..69

CSABAI ZOLTÁN – SZÉL GYŐZŐ – KUTASI CSABA:
Aquatic beetle collection of the Bakony Natural History Museum, Zirc, Hungary
(Coleoptera: Hydradephaga and Hydrophiloidea).101

ROZNER ISTVÁN:
Data to the beetle fauna of Öreg-hegy at Mindszentkálla (Insecta: Coleoptera) 113

PAPP JENŐ:
A monograph of the braconid fauna of the Bakony Mountains
(Hymenoptera, Braconidae) VI. Helconinae, Brachistinae,
Cheloninae and Sigalphinae ..145

TÓTH SÁNDOR:
The amphibian Diptera fauna of the Kis-Balaton’s second recultivation period,
put together after the research of 2002165
ADATOK A BAKONY-HEGYSÉG FLÓRÁJÁHOZ III.

GALAMBOS István

Bakonyi Természettudományi Múzeum, Zirc

Abstract: Data for the flora of Bakony mountains III. - The author continues the publication of pyto-geographically interesting data of species placed in the Herbarium of the Natural History Museum of Bakony Mountains. In this paper some interesting data of Leguminosae are presented: 176 data of 57 species and subspecies published in systematic order.

Bevezetés

Eredmények

Enumeráció:
ANGIOSPERMATOPHYTA
DICOTYLEDONES
Leguminosae

Genista germanica L. – REdl (1942) három bakonyaljí adata (Meggyesi-erdő, Deákierdő, Sárosfői-erdő) két adattal bővült:

Genista pilosa L. – SIMON (2000) a növény előfordulásai helyei között a Bakonyt felsorolja, de nem említi a Keszthelyi-hegységet, amely ugyan a Balaton-felvidékkel együtt a természettípusi Bakony része, de SIMON az elterjedési adatoknál külön említi e földrajzi egységeket. BORBÁS Keszthely és Gyenes völgyeiből (Keszthelyi-hegység) és Vörösgödön környékéről említi. A herbáriumban két adata található a Keszthelyi-hegységből:

Cytisus scoparius L. – Rédl (1942) a Magas- és Keleti-Bakonyból 2-2 helyről, a Bakonyalján 3 lelőhelyről említi. Herbáriumi adatok szerint Bakonyszeltlászló és Fenyőfő környékén, mind a hegyvidéken, mind pedig a bakonyaljí erdeifenyvesben megtalálható:
Terepi megfigyelések alapján előfordul Zirc mellett a Pintér-hegy nyílókában. E helyeken többnyire vadtakarmánynak ültetett állományai találhatók. Uzsá környéki előfordulása már természetes:

Cytisus procumbens (W. et K.) Spreng. – A szűkebb értelemben vett Bakonyra, ezen belül a D-Bakonyra új faj:

Ononis arvensis L. – Noha Simon (2000) gyakori fajnak említi, így elterjedését nem is részletezi, ez a Bakonyra nem igaz. Rédl (1942) egyetlen adata a Séd-völgyésből származik, így magas-bakonyi adata említésre méltó:

Legközelebbi ismert adatai a Várpalota-Devecseri-árokóból és Fenyőfő környékéről (RÉDL 1942).

Trifolium aureum Pol. – Rédl (1942) Kitaibel és Polgár nyomán 7 adatat közli a hegyésből. Új adatok a következők:
- Comit. Veszprém, in faucibus, ad rivum Cuha, in rupestribus, Alt. cca. 230 m. s. m. montes Bakony. Bakonyszeltlászló, 2. VII. 1974. Leg. et det. I. Galambos

Trifolium dubium Sibth. – Rédl (1942) egyetlen bakonyi adatot (Magas-Bakony: Hódos-ér) közölt. Újabb adatai a következők:

Trifolium fragiferum L. – BORBÁS (1900) a Balaton-vidéken gyakorinak mondja, RÉDL (1942) a Balaton-felvidékről (Papkeszi), és a Bakonyaljáról (Tósokberénd, Devecser) közli. Ujabb herbaáriumi adatai a következők:
- Comit. Veszprém, ad ripam lacus Nagy-tó, prope pag. Öcs. Alt. cca. 300 m. s. m. Öcs, 1. IX. 1999. Leg. et det. I. Galambos

Trifolium incarnatum L. – Atlanti-mediterrán elterjedésű, nálunk termesztett faj. Gyakran kivadul. BORBÁS (1900) és RÉDL (1942) flóraművei nem említik. Kivadulásnak tekinthető herbaáriumi adatai a következők:

Trifolium medium GRUBBG. – BORBÁS (1900) szerint Révfülöptől – Keszthelyig található, RÉDL (1942) a Déli-Bakonyból nem közli. Újnak számítanak a Balaton-felvidék keleti felére, a Somlóra és a Déli-Bakonyra vonatkozó adatai:

Trifolium ochroleucum HUDS. – BORBÁS (1900) enumerációja Keszthely hegyi parlagjáról említi, míg RÉDL (1942) nyolc előfordulását sorolja fel. Érdekesebb új adatai a következők:

Trifolium patens SCHREB. – SÓO (1966) a Kisalföldről közli: (Celldömölk, Pápáig). Pápa környéki adata TALLÓS herbáriumi lapjára vonatkozhat. A Tátika- Kovácsi hegycsoport területén gyűjtött adata a következők:
Trifolium rubens L. – BORBÁS (1900) gyakorinak mondja, RÉDL (1942) a Bakony magasabb részeiről és a Fűzfő környékéről közli. Bakonyaljai és Somló-hegyi herbáriumi adatai újak:

- Comit Veszprém, in pascuis arenosis supra pag. Hegyesd. Alt. cca. 190 m. s. m. Hegyesd, 10. VI. 1982. Leg. et det. I Galambos

Anthyllis vulneraria L. – A hazánkban termesztett és helyenként kivaduló tőfaj a Bakonyban ritka. RÉDL (1942) A Magas-Bakonyból (1) és Keleti-Bakonyból (2) közli. Újabb adatai a következők:
- Comit. Győr-Moson-Sopron, in linea caespitosa quercetorum Öreg-erdő (inter Sokorópátka 3B-3C) inter pag. Sokorópátka et Kajárpec, Alt. cca 220 m. s. m. Sokorópátka, 11. V. 1999. Leg. et det. I. Galambos

Dorycnium herbaceum VILL. – Bakonyi viszonylatban ritkább, mint a D. germanicum. BORBÁS (1900) csak a Keszthelyi-hegységből, RÉDL (1942) a Várpalota-Devecseri árokából, Veszprém környékéről és Fenyőfőről közli. Erdekesebb új adatai a következők:

Lotus pedunculatus CAV. – SIMON (2000) csak Dombóvár mellől említi. TALLÓS PÁL herbáriuma tartalmazza a következő lapot:

Galega officinalis L. – A Magyar-középhegység szélein szőrványosan előforduló faj. A szűkebb értelemben vett Bakonyból csak kevés helyről volt ismert (Rédl 1942). Herbáriumi adatai a következők:

Astragalus asper Wulf. in Jacq. – A Balatonicumra új faj, adatközlésem (Galambos in lit.) nyomán került be Farkas (1999), majd onnan Simon (2000) munkájába.

Coronilla coronata Nath. – Rédl (1942) a Déli-Bakony északi pereméről két adatát közli. Ehhez képest új Szalai Miklós adata:

A hajtások virágzat nélkül, de a pillás levélszél megbízható támpontot ad. A Bakony­hegységére új faj.

Hippocrepis comosa L. – Gyakorisága ellenére RÉDL (1942) a Déli-Bakonyból csak a Kábhegyről közli. A kistáj déli részén is előkerült:

Onobrychis viciifolia Scop. – A takarmánynak termesztett, gyakran kivaduló növény a hegység alapvető flóraműveiben nem szerepel. A herbáriumban található bakonyi adatai a következők:

Vicia angustifolia L. – BORBÁS (1900) a Keszthelyi-hegységből, RÉDL (1942) csak a Pénzesgyőr melletti Som-hegyről közli. Herbáriumi adatai alapján a faj ennél jóval gyakrabban tűnik:

- Comit. Veszprém. prope pago Aszófő in, linea silvatica. Alt. cca. 200 m. s. m. Aszófő, 1. VI. 1978. Leg. et det. F. Németh

Vicia angustifolia L. ssp. segetalis (THUILL.) AR. – BORBÁS (1900) szerint „mezőn md” értsd: mindenütt. RÉDL (1942) a Hódosérből, Nagyesztergár mellől, a Kabhegyről és Veszprém mellől közli. Új adatai a következők:

Vicia cassubica L. – BORBÁS (1900) szerint a Balaton-felvidék több pontján megtalálható (Keszthely, Cserszegtomaj, Badacsony, Alsóörs, Vörösberény). RÉDL (1942) flóraműve ugyanakkor nem tartalmazza a szűkebb Bakonyból, s ezt megerősíti SIMON (2000) határozója is, ahol a Balaton-vidéktől elköltözött RÉDL-féle Bakony nincs feltüntetve elterjedési adatai között. Új adatai a következők:

Vicia dumetorum L. – BORBÁS (1900) Keszthely környékéről és a Badacsonyrról említi, RÉDL (1942) a Magas-Bakonyból (Iharkút: Róka-hegy; Pénzesgyőr: Som-hegy; Cuhavölgy) a Keleti-Bakonyból (Tobán-hegy) és Pétfürdő környékéről közli. További adatai a következők:
- Comit. Veszprém, ad viam publicam prope villam Sarvalykút ad pag. Sümeg. Alt. cca. 200 m. s. m. Sümeg, 22. VII. 1983. Leg. et det. I. Galambos

Vicia faba L. – A Magas-Bakonyban helyenként takarmánynak termesztett faj kivadulhat:

Vicia grandiflora SCOP. – BORBÁS (1900) a Balaton-felvidék nyugati feléről közli, míg RÉDL (1942) a Bakony résztájairól kevés adatát sorolja fel. Újabb adatai a következők:

Vicia hirsuta (L.) S. f. **GRAY** – A Balaton környéki füves lejtőkön gyakori (BORBÁS 1900). RÉDL (1942) kevés helyről közli, újabb adatai a következők:
Vicia lathyroides L. – BORBÁS (1900) Keszthely, Gyenesdiás, Badacsony, Tihany területéről közli. RÉDL. (1942) az Északi- (Magas-) Bakonyból több helyről felsorolja. A Bakonyaljáról Tapolcafőt említi. Új adatai:

- **Comit. Veszprém.** In clivis inter septentrionales et occasum solstitiali montis Somló supra pagum Doba margines silvis in locis graminosis. Alt. cca. 400 m. s. m. Doba, 4. VII. 1978. Leg. J. Istenes, det. I. Galambos
- **Comit. Veszprém.** In collis herbosis montis Feketehegy prope lacu supra pagum Köveskál. Alt. cca. 300 m. s. m. Köveskál, 21. IV. 1977. Leg. et det. I. Galambos
- **Comit. Veszprém.** Ad viam terrosam in loco graminoso propter pagum Köveskál. Alt. cca. 170 m. s. m. 21. IV. 1977. Leg. et det. I. Galambos

Vicia lutea L. – A Bakonyra új faj. Délnyugat felől terjeszkedve éri el a Balaton-felvidék részét képező Tátika - Kovácsi-hegycsoport kistáját.

- **Comit. Veszprém.** In cerreto super clivum occidentalem montis Somló. Alt. cca. 300 m. s. m. Somlószöllős, 8. VII. 1978. Leg. et det. I. Galambos

Vicia pannonica Cr. – BORBÁS (1900) Badacsony, Révfülöp és Veszprém környékéről, RÉDL. (1942) a hegység magasabb részeiről közli, de a Bakonyaljáról nincs adata. Újabb adatai a következők:

- **Comit. Veszprém.** In clivis arcis Csesznek, in loco saxeo-herbido-fruticos. 23. VII. 1975. Leg. I. Isépy, det. I. Galambos
- **Comit. Veszprém.** In fruticetis montis Várhegy prope pag. Csesznek. Alt. cca. 250 m. s. m. 30. V. 1978. Leg. et det. I. Galambos

Vicia sepium L. – BORBÁS (1900) a Keszthelyi-hegységből, a Badacsonyról és Vörösserény környékéről közli. RÉDL (1942) a Bakonyaljáról nem jelzi. Érdekesebb, új adatai:

- **Comit. Veszprém.** in pinetis arenosis cum Robinis pseudoacacis prope pag. Bakonyszentlászló.
Vicia sylvatica L. – Adatai csak a Badacsonyról (BORBÁS 1900) és a Kőris-hegyről (RÉDL 1942) voltak. Padragkút mellett (Déli-Bakony) SZALAI MIKLÓS gyűjtötte, a Kab-hegy keleti lejtőjén magam is megfigyelt 2000 folyamán.

Vicia sparsiflora TEN. – POLGÁR (1941) enumerációja a Tényő (Tényőhegy) melletti Fekete-hegyről közli. Ez a földrajzi hely a Pannonhalmi-dombság középső vonulatán nyugati oldalán található. A növény előkerült a nyugati vonulatból is, Sokorópátka határában:

Vicia tenuifolia ROTH – BORBÁS (1900) Keszthely környékéről és a Badacsonyról közli. RÉDL. (1942) a Bakonyaljáról nem mutatta ki. Új adatai:

Vicia tetrasperma (L.) SCHREB. – A Balaton-környékén mindenütt (BORBÁS 1900). A Bakonyból RÉDL (1942) a Magas-Bakonyból, Veszprém környékéről és Fenyőfőről közli. Új adatai:

Vicia villosa ROTH – BORBÁS Keszthely – Révfülöp között több helyről említi. RÉDL (1942) a Magas- és Keleti-Bakonyból két-két helyről és a Somlóról közli. Újabb adatai a következők:

- Comit. Veszprém, in incultis, solo arenoso prope pag. Fenyőfő. Alt. cca. 250 m. s. m. 4. IX. 1981. Leg. et det. I. Galambos
- Comit. Fejér, in arbusculetis supra vallem Barokvölgy prope villam Királyszállás. Alt. cca. 300 m. s. m. 8. VII. 1976. Leg. et det. I. Galambos
- Comit. Veszprém, in pratis arenosis prope pag. Pápateszér. Alt. cca. 200 m. s. m. 5. VII. 1985. Leg. et det. I. Galambos

Lathyrus nissolia L. – RÉDL (1942) két adatát ismerteti: Rátóti-erdő (Magas-Bakony) és Fajszi-erő (Veszprémi fennsík). Új adata a következő:

Lathyrus sylvestris L. – BORBÁS (1900) csak Keszthely környékéről említi. RÉDL 1942) a Magas-Bakony több pontjáról közli, A Déli-Bakonyból két adata ismert (Agár-tető, Kab-hegy), míg a Bakonyaljáról csak Fenyőfőről közli. Új adatai:
- Comit. Veszprém, in lapicidinaris ad pusztám Sarvalykút solo perturbato. Alt. cca. 250 m. s. m. Sümeg, 23. VII. 1983. Leg. et det. I. Galambos
- Comit. Veszprém. Ad margines querceti prope pago Taliándörögd. Alt. cca. 400 m. s. m. Taliándörögd, 27. VII. 1977. Leg. et det. F. Németh

Lathyrus latifolius L. – RÉDL (1942) a Magas-Bakonyból és Veszprém környékéről közli. Új adatai:

Lathyrus hirsutus L. – BORBÁS (1900) Keszthelyről, RÉDL (1942) csak Zircről (Magas-Bakony) közli. Új adatai:

Lathyrus sphaericus RETZ. – BORBÁS-nál (1900) nem szerepel, RÉDL. (1942) Zircről közli, SIMON (2000) a Bakonyból nem említi. Új adata:
Lathyrus pannonicus (JACQ.) GARCKE – A tőfajt RÉDL (1942) csak Tapolcafőről közli, míg BORBÁS (1900) adatai bizonyosan a ssp. collinus-tra vonatkoznak. Újabb adatai:
- Comit. Veszprém, prope Tapolca, in pratis uliginosis, in glareosis. Alt. cca. 120 m. s. m. Tapolca, 18. V. 1974. Leg. et det. I. Galambos

Lathyrus vernus (L.) BERNH. – A flóraművek (BORBÁS 1900, RÉDL 1942) szerint gyakori faj. Adataikhoz képest az alábbiak bizonyultak újnak:

Lathyrus venetus (Mill.) WOHLF. – RÉDL (1942) a Bakony magasabb részeiről közölt adatokat. Két alábbi adata kiegészíti ezeket:

Pisum sativum L. – A termesztett veteményborsó ritkán elvadulhat. Ilyennek tekinthető alábbi adata is:
Irodalom

A szerző címe (Author’s address): Dr. GALAMBOS István
Bakonyi Természettudományi Múzeum
8420-Zirc, Rákóczi tér 1
E-mail: botanika@bakonymuseum.koznet.hu
A BAKONYALJA HOMOKVIDÉKÉNEK ERDEI I.
II. HOMOKI ERDEIFENYVESEK –
FESTUCO VAGINATAE -
PINETUM SYLVESTRIS SOÓ (1931) 1971

KEVEY BALÁZS

Pécsi Tudományegyetem, Növénytani Tanszék

Abstract: Forests of the sandhill area of Bakonyalja. II. Festuco vaginatae-Pinetum sylvestris Soó (1931) 1971 – This study presents the phytocenological description with ten relevés of the pine forests of the sand-covered foothills of the Western-Bakony Mountains. The origin of this vegetation type at this location has been heavily debated. By the current view, this „primeval pine forest” is a relic association of the postglacial cool and dry period (10000-9000 BP) when similar forests may have occurred in most sand dune areas of Hungary. Later, during gradual warming (9000-4500 BP) the Scotch pine was competitively excluded by deciduous tree species on the sand dunes of the Plains. The „primeval pine forest”, however, has survived this critical period in the shadow of the high Bakony, where the climate has been cooler and moister than elsewhere. On the top of the sand dunes, the Scotch pine could succesfully compete with the deciduous trees, and formed a mixed coniferous-deciduous forest. Thus, the deciduous forest-steppe vegetation of the Plains is substituted by the coniferous forest-steppe at the foothills of the Bakony. In physical appearance this forest resembles the pine forests of the seashore sand dunes of Northern Europe, but in the composition of the herb layer it is more similar to the pine forests of the Ukrainian and Russian forest-steppe zone. Species characteristic of the Molinio-Arrhenatherea s.l., Festuco-Bromea s.l., Festucetalia vaginatae and Quercetalia pubescentis-petraeae s.l. syntaxa are particularly frequent. There are also many rare and protected species in this association, Because of its great importance in relation to vegetation history, this pine forest deserves strict protection.

1. Bevezetés

A „Fenyőfői Ősfenyves” a Bakony és a Kisalföld határán levő homokvidéken foglal helyet. Átmeneti helyzeténél fogva földrajzi hovatartozását illetően kissé eltérőek a vélemények. Többnyire – Bakonyalja néven – a Bakony flórajárásához (Vesprimense) sorolják (pl. MAIÉR 1988), de néhányan a Kisalföld (Arrabonicum) peremvidékeként

1A kutatásokat a Bakonyi Természettudományi Múzeum támogatta

2. A kutatás és elemzés módszerei

3. A fenyőfői „Ősfenyves” társulási viszonyai

A fenyőfői „Ősfenyves” fiziognómiai felépítése az észak-európai tengerpartok homokdűnéinek fenyveseire, gyepésztése ezzel szemben a pannon homokpuszták növényzetére emlékezetet, ezért faji összetételében szubatlanti, boreális, pannóniai és szubmediterrán fajok keverednek. Ez a kettős arculat azzal magyarázható, hogy a Bakony északnyugati lábára felhúzódik a Kisalföld meszes homoktakartója, ahová a szubatlantikus légterületek is érkeznek (vö. BARTHA 1999).

Az „Ősfenyves”-ből készített tíz növénycönológia felvétel (1. táblázat) alapján a felső lombkoronaszint kevésbé záródik (50-65 %), ezért az aljnövényzet sok fényhez jut. Magassága 18-22 m, a fák átlagos törzsátmérője pedig 40-50 cm között változik. Az uralkodó Pinus sylvestris mellett a lombos fákat csak a Quercus cerris és a Q. robur képviseli, melyek csak szálanként, esetleg kisebb csoportokban fordulnak elő. Megfigyelhető egy alacsonyabb fákból álló - 10-30 % borítású és 8-16 m magas - második lombkoronaszint is, amelyben szintén a Pinus sylvestris játszik fő szerepet. Mellette elegyesen az alábbi fafajok találhatók: Acer campestre, Betula pendula, Cerasus avium, Fraxinus ornus, Pyrus pyraster, Quercus cerris, Q. petraea, Q. robur, Tilia cordata.

A gyepészint borítása 70–90 % között változik. Különösen olyan helyeken fajgazdag, ahol a lombkoronaszint nyílt. Benne fáciesképző lehet az Arrhenatherum elatius, a Poa angustifolia és a Peucedanum oreoselinum, de olykor egyéb lágyszárúak is előfordulnak vizsgolják nagyobb tömegeből: Agrostis stolonifera, Brachypodium sylvaticum, Dactylis glomerata, Fallopia dumetorum, Festuca vaginata, Solidago virga-aurea, Teucrium chamaedrys stb. A mohaszint igen változóan fejlett (5–60 %). Helyenként csaknem összefüggő
mohaszőnyeget képeznek az alábbi gyakoribb fajok: *Dicranum scoparium*, *D. undulatum*, *Entodon schreberi*, *Polytrichum juniperinum*, *Syntrichia ruralis*, *Tortula ruralis* stb.

A cönológiai felvételekből (1.a és 1.b táblázat) és a karakterfajok csoportrészesedéséből (2. táblázat) kitűnik, hogy a réti elemek (*Molinio-Arrhenatheretum* s.l.: 7,1 %), de különösen a száraz gépek növényei (*Festuco-Brometum* s.l.: 24,6 %) jelentős szerephez jutnak. Külön kiemelendők az asszociáció karakterét jelentősen meghatározó homokpuszta fajok (*Festucetum vaginatae*: 5,8 %): *Carex liparica*, *C. supina*, *Centaurea arenaria*, *Chondrilla juncea*, *Dianthus arenarius* ssp. *borussicus*, *Erysimum diffusum*, *Festuca vaginata*, *Gypsophila fastigiata* ssp. *arenaria*, *Helichrysum arenarium*, *Hieracium echioides*, *Onosma arenarium*, *Sedum sartorianum* stb. Az erdei növények közül elsősorban a száraz töltységek elemei gyakoriak (*Quercetum pubescentis-petraeae* s.l.: 24,9 %).

Fenti szüntaxonok mellett az üde lomberdei növények (*Querco-Fagetea*: 8,1 %, *Fagetalia*: 7,3 %, *Quercetalia roboris*: 2,7 %) és a mérsékelt övi fenyvesek növényei (*Abieti-Piceea* s.l.: 4,0 %) a száraz talajviszonyok mellett nem jutnak jelentősebb szerephez. A karakterfajok fenti aránya az „Ősfenyves” erdőssztyeppel jellegét igazolja. A BORHIDI-(1993, 1995) féle sociális magatartási típusok csoportrészesedése (3. táblázat) szerint a generalisták (G4) játszanak a meghatározó szerepet.

4. A homokbuckád erdeinek fejlődése a fenyő-nyír kortól

Fenti források szerint a hűvös és száraz fenyő-nyír korban (i.e. 8000-től 7000-ig) a lombos fák közélegyes erdeifenyvesek országszerte elterjedtek (vö. ZÓLYOMI 1958; JÁRAI-KOMLÓDI 1966). POCS (1965) szerint a magyarországi homoki erdeifenyvesek ekkor váltak tűlevelű erdősztyep választói, melyekhez hasonló állományok az orosz erdőssztyep zónában is megfigyelhetőek. A tűléses erdők alakulása az orosz erdők áthelyezésével játszott szerepet, bár az anyagi források alapján a fenekes erdők helyett a mai pusztai töltységekhez hasonló lombhullató erdőssztyep is meglehetett (vö. ZÓLYOMI 1936; JÁRAI-KOMLÓDI 1966). A Bakonyalja erdeifenyvesei ezt a kritikus időszakot – a tártyi
csapadékosabb és hűvösebb éghajlatának köszönhetően – vészlehető, bár faji összetételük bizonyul megváltozott, mely feltehetően a kontinentális sztyep- és erdőssztyep-elemek bevándorlásával kapcsolatos.

A meleg és csapadékos tölgy korban (i.e. 5500-től 2500-ig) az alföldi homokvidékek részben befordultak. A buckatetőkön a homokpusztai sztyepeket felváltotta az erdőssztyep, azaz a mai nyílt homoki tölygesekhez (Festuco ripicola-Quercetum roboris) hasonló társulás, míg a buckaközi üde völgyekben a zárt homoki tölygesek (Convallario-Quercetum roboris, Polygonato latifolii-Quercetum) is kialakultak (vö. ZÓLYOMI 1936, 1958; JÁRAI-KOMLÓDI 1966). A Bakonyaljáról ebben a korban az erdeifenyezőt a bevándorló tölgyfajok nem tudták kiszorítani, bár állományaikban valószínűleg elegyenéi előfordultak. Ekkor kerülhetett a homoki erdeifenyezések aljnövényzetébe a szubmediterrán fajok jelentős része, miközben a társulás továbbra is megőrizte tőlevelű erdőssztyep jellegét.

A hűvösebb és csapadékosabb bükk I. korban (i.e. 2500-től i.e. 800-ig) a homokhátak erdőssztyep társulásai fennmaradtak (Festuco ripicola-Quercetum roboris, Festuco vaginatae-Pinetum sylvestris), de – az előző korhoz képest – kissé jobban záródhattak, s valószínűleg szubmediterrán jellegük csökkent. A valamivel melegebb, szárazabb és szélsőségesebb klímájú bükk II. korban (i.e. 800-tól napjainkig) a Duna-Tisza közének pusztai tölygei (Festuco ripicola-Quercetum roboris) jelentősebben visszahúzdóhhattak. FÉKETE (1992) kutatásai szerint ugyanis – a mai éghajlat mellett – e társulás a mai klima mellett már nem képes újra keletkezni. Szórványos előfordulása valószínűleg a tölgy kor (i.e. 5500-től 2500-ig) emléke. Buckatetőkön a szukcesszió jelenleg csak a nyáras-borókásokig (Junipero-Populetum) jut el. Ezen megállapítások azonban az szerző szerint csak a Duna-Tisza közére vonatkoznak, ahol az éghajlat lényegesen szárazabb és szélsőségesabb, mint egyéb homokvidékeinkben (FÉKETE ex verb.). A Nyírség buckatetőin így a szukcesszió – a jelenlegi klíma mellett – eljuthat a pusztai tölygességig (Festuco ripicola-Quercetum roboris), s a Bakonyalján ma is természetesen újul a homoki erdeifenyez (Festuco vaginatae-Pinetum sylvestris).

A fentiekr szerint a fenyőfői „Ősfenyves” a posztglaciális, hűvös és száraz klímájú fenyőnyikor (i.e. 8000-tól 7000-ig) előfordulása tekinthető (vö. MAJER 1988). Ebben az időben valószínűleg az Alföld homokvidékein is lehetette sztyepjellegű erdeifenyezések (vö. JÁRAI-KOMLÓDI 1966), ezek azonban a későbbi klímaváltozások során – elsősorban a száraz felmelegedés miatt – átadták helyüket a homokpusztáknak, a nyílt lombkoronaszintű homoki tölygeseknek (Festuco ripicola-Quercetum roboris) és a nyáras-borókásoknak (Junipero-Populetum).

5. A fenyőfői „Ősfenyves” helye a növénytársulások rendszerében

Divízió: ABIETI-PICEEA HADÁÉ 1967
Osztály: PULSATILLO-PINETEA OB Erd. in OBERD. et al. 1967
Rend: PULSATILLO-PINETALIA OB Erd. in OBERD. et al. 1967
Csoport: Festuco vaginatae-Pinion sylvestris SOÓ 1971
Asszociáció: Festuco vaginatae-Pinetum sylvestris SOÓ (1931) 1971

6. Az ember természet-átalakító tevékenysége

A korábban részletesebb szekuláris szukcesszió mellett meg kell említeni az ember természetet átalakító tevékenységét, amely már a népvándorlások korától szerepet játszott az „Ősfenyves” faji összetételének alakulásában. Az erdőirtások következtében – különösen az Alföldön – megfogyatkoztak az erdők, a futóhomok pedig másodlagosan megindult (SOÓ 1959), s lassan kialakult a jelenlegi kultúrtáj (SOÓ 1926, 1929; ZÓLYOMI 1936). Az alföldi homokbuckák pusztai tölgyeseből (Festuco rupicolae-Quercetum roboris) alig maradt. Az „Ősfenyves” (Festuco vaginatae-Pinion sylvestris) kapcsán sem szabad nagy kiterjedésű őshonos faállománnyokra gondolnunk: „Őreg fák, kisebb facsoportok vészelték csak át a zivataros évszázadokat” (MAJER 1988). A homok megkötésére használtak fel a Duna-Tisza közén a tájidegen akációkat, a Bakonyalján pedig az őshonos erdeifenyő cseméteiből létesítettek kiterjedt állományokat (MAJER 1988). E telepítések nehezítették meg a természetszerű
és mesterséges erdeifenyvesek megkülönböztetését, heves vitákat váltva ki az „Ősfenyves” eredetével foglalkozó erdészek és botanikusok körében. E kérdés kapcsán meg kell említeni BORHIDI (1958) Belső-Somogy homokvidékén végzett kutatásait, mely szerint e tájon az erdeifenyő többfelé is őshonosnak tekinthető, amit idős tanúfák és régi erdészeti dokumentumok igazolnak. Az 1800-as években ugyanis az erdészek az erdeifenyőt „gyomfának” tartották, s írtották, míg telepítésével csak később kezdtek foglalkozni (BORHIDI ex verb.). Így az is elképzelhető, hogy évszázadokkal ezelőtt Belső-Somogyban is lehettek a bakonyaljai állományokhoz hasonló – lombos fákkal elegyes – homoki erdeifenyvesek, melyek utolsó töredékei emberi tevékenység áldozataivá váltak.

7. Természettvédelmi vonatkozások

Érdekességként említem, hogy 2004. nyarán HORVÁTH Lajos és ALEXAY Zoltán tárlatán társaságában a Gönyűi-homokvidéken jártam, s megfigyeléseimet a vegetáció- és tájtörténettel foglalkozó botanikus kollégáim figyelmébe ajánlom. Fajgazdag homoki gyepeken jártunk, majd megtekintettük a velük érintkező telepített erdeifenyveseket is. Meglepetésemre szinte megtévesztően hasonló látvány fogadott, mint a fenyőfői „Ősfenyves”-ben: a viszonylag idős fenyőfák (Pinus sylvestris) alatt gyakori volt a Juniperus communis, a gyepszinten számos homokpusztai növényt figyeltem meg, s az erdő alját helyenként összefüggő mohaszőnyeg borította. E megfigyelésem után el tudom képzelni, hogy ha egy fajgazdag homokpusztát befenyvesítenek, kialakulhat egy természetszerű homoki erdeifenyveshez (Festuco vaginatae-Pinetum sylvestris) hasonló élőhely. Az sem kizárt, hogy a Gönyűi-homokvidéken, a gyepszinten számos homokpusztai növényt figyeltünk meg, s az erdő alját helyenként összefüggő mohaszőnyeg borította. E megfigyelésem után el tudom képzelni, hogy ha egy fajgazdag homokpusztát befenyvesítenek, kialakulhat egy természetszerű homoki erdeifenyveshez (Festuco vaginatae-Pinetum sylvestris) hasonló élőhely. Az sem kizárt, hogy a Gönyűi-homokvidéket pár ezer évvel ezelőtt a fenyőfói „Ősfenyves”-hez hasonló erdők boríthatták, így a 60–80 évvel ezelőtti fenyőtelepítés a táj vegetációjának „rekonstrukciója”-ként is felfogható. Ily módon reménykedhetünk abban, hogy Fenyőfőnél a rekultiváció sikerei jár. Az „Ősfenyves” legtipikusabb részét elpusztító bauxitbányászat ugyanis néhány éve befejeződött. A földmunkákkal kapcsolatos tájrendezést követően a területen erdeifenyő (Pinus sylvestris) ültetvényeket hoztak létre. Mivel a bányatelek határán kívüli erdőrészek a homokpusztai növényzet jelentős részét megőrizték, megvan a
reménya arra, hogy a fiatal faültetvény ismét homoki erdeifenyessé alakulhat. Ehhez természetesen hosszú időre, esetleg 100–200 évre lenne szükség. Ennek érdekében biztosíthatnunk kell a fiatal telepítések zavartalanságát, s a homokpusztai növények visszatelepítésével segíthetnénk elő az aljnövényzet regenerálódását. Kontroll területeken s szükség szerint hosszú távú monitoring-vizsgálatokkal lehetne nyomon követni, amelyekből értékes tudományos és természetvédelmi következtetések vonhatók le.

Köszönetnyilvánítás

Irodalom

A szerző címe (Author’s address): KEVEY Balázs
Pécsi Tudományegyetem, Növénytani Tanszék
H–7624 Pécs, Ifjúság u. 6.
E-mail: keveyb@ttk.pte.hu
Melléklet

1.a táblázat: *Festuco vaginatae-Pinetum sylvestris* (E906)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A-D</th>
<th>K</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phragmitetalia</td>
<td></td>
</tr>
<tr>
<td>Solanum dulcamara (Cal,Bia,Spu,Ate,Ai)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Molinio-Arrhenatheretalia</td>
<td></td>
</tr>
<tr>
<td>Arrhenatheretalia (incl. Arrhenatheretalia)</td>
<td></td>
</tr>
<tr>
<td>Arrhenatherum elatius (Alo,Arn,Flv,Qpp)</td>
<td>C</td>
<td>4</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>+4</td>
<td>V</td>
<td>100</td>
</tr>
<tr>
<td>Senecio jakobea (Flv,Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Nardo-Callunetalia (incl. Nardetalia et Nardo-Agrostion tenuis)</td>
<td></td>
</tr>
<tr>
<td>Hypochloeris radicata (MoA,KC,Qrp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Dianthus deltoides (Ara)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Nardus stricta (MoA)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Calluno-Ulicetalia (incl. Vaccinio-Genistetalia et Calluno-Genistion)</td>
<td></td>
</tr>
<tr>
<td>Betula pendula (Qr,AbP)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Koelerio-Corynephoretalia (incl. Corynephoretalia)</td>
<td></td>
</tr>
<tr>
<td>Jasione montana (Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td>Veronica dillenii</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>Vicia lathyroides (Flv,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Anthemis ruthenica (Fvg)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Minuartia viscosa</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Festuco-Bromea</td>
<td></td>
</tr>
<tr>
<td>Sedum sexangulare (SS)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>70</td>
</tr>
<tr>
<td>Potentilla arenaria (ArF,Fvg,Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Sanguisorba minor (Flv)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Scabiosa ochroleuca (Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Festuca rupicola (Frp,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Koeleria cristata s.str. (Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Viola rupestris</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>Species</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>A-D</td>
<td>K</td>
<td>%</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Phleum phleoides (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carex praecox (ArF,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Centaurea rhenana (Fvg,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Festucetalia vaginatae (Festucetalia vaginatae et Festucion vaginatae)</td>
<td></td>
</tr>
<tr>
<td>Festuca vaginata</td>
<td>C</td>
<td>+</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+2</td>
<td>V</td>
<td>90</td>
</tr>
<tr>
<td>Centaurea arenaria</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Erysimum diffusum (Fvl)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>IV</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Hieracium echioides agg. (Fru)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>IV</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Dianthus arenarius ssp. borussicus</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Gypsophila fastigiata ssp. arenaria (BrF)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Sedum sartorianum ssp. hillebrandtii</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Chondrilla juncea (Fvl,Sea,Che)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Helichrysum arenarium</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Onosma arenarium (Fru)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carex supina (Fru)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Festuco-Brometea</td>
<td></td>
</tr>
<tr>
<td>Verbascum lychnitis (Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Petrorhagia saxifraga (Fvl)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>IV</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Thymus glabrescens</td>
<td>C</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+,+</td>
<td>IV</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Anthericum ramosum (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Linaria genistifolia (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Ranunculus polyanthemos (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>III</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Bromus erectus s.str. (Arn,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Carlina vulgaris (Qpp,PQ)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Artemisia campestris (KC)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Asperula cynanchica (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Bromus inermis (Bra,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Stipa pennata agg. (Fv1,Fru)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Helianthemum ovatum (Bra)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Hypochoeris maculata (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Medicago falcata (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Salvia pratensis (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Stachys recta (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Veronica spicata s.str. (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Acinos arvensis (SS,Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Anthyllis vulneraria</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hieracium cymosum agg. (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ranunculus bulbosus</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Seseli annuum</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

32
<table>
<thead>
<tr>
<th>Species/Group</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
<th>Column 10</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festucata valesiacae</td>
<td>C</td>
<td>I</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euphorbia sequieriana</td>
<td>C</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fragaria viridis (Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Dianthus giganteiformis ssp. pontederae (Qpp, Fvg)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Silene otites (Fvg)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Melica transsilvanica (Fvg)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pulsatilla pratensis ssp. nigricans</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agropyron intermedium (ArA, Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Allium montanum</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anthericum vulneraria ssp. polyphylla</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Centaurea micranthos (Fvg, Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Asplenio-Festucion pallentis</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Asplenium adiantum-nigrum (TA, Qc)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polypodium vulgare (TA, Qr)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Festucion rupicola</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cynoglossum hungaricum (Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Seseli varium (Fvg)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Viola tricolor (AQ)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Allium oleraceum (Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Viola ambygua</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cynodonto-Festucenion</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cerinthe minor (Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chenopodio-Scleranthea</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromus sterilis (Che)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Capsella bursa-pastoris (CyF)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactuca serriola</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Secalieta</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Melandrium album (Cau, GA)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lamium purpureum (Che)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adonis aestivalis (Cau)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muscaria comosum (FBt)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aperetalia (incl. Aphanion)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myosotis arvensis (Arn, CyF)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chenopodieta</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Artemisia absinthium (Fvl, ArA, Onn, Ar)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ballota nigra (Ar)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Galio-Alliarion</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>A-D</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Alliaria petiolata (Epa)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calystegion sepium</td>
<td>Lamium maculatum (Pa,Agi,F,T,A,Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Saponaria officinalis (Che,Ar)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Epilobietea angustifolii (incl. Epilobietalia)</td>
<td>Salix caprea (US,QF)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Salicion albae</td>
<td>Humulus lupulus (Cal,Ate,Ai)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Agropyron caninum (Ulm,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Alnetea glutinosae (incl. Alnetalia glutinosae)</td>
<td>Dryopteris carthusiana (F,Agi,Qr,VP)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Dryopteris dilatata (F,Agi,Qr,VP)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Querco-Fagetea</td>
<td>Brachypodium sylvaticum (Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clinopodium vulgare (Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Fragaria vesca (Qpp,Epa)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ligustrum vulgare (Cp,Qpp)</td>
<td>B1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>Crataegus monogyna (Qpp)</td>
<td>B1</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>Fallopia dumetorum (Qpp,Ga)</td>
<td>C</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>Geranium robertianum (Epa,F)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mycelis muralis</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Quercus petraea agg. (Cp,PQ,Qpp)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Clematis vitalba (Qpp)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>Quercus robur (Ai,Cp,Qpp)</td>
<td>A1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>+2</td>
<td>IV</td>
</tr>
<tr>
<td>Species</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>A-D</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Galeopsis pubescens (Qpp.Epa)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Hieracium sabaudum agg. (Qr.Qpp,AbP)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Veronica chamaedrys (Qpp.Ara)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Acer campestre (Qpp)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td>Euonymus europaea (Qpp)</td>
<td>B2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td>Tilia cordata (Cp,Qpp)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td>Dactylis polygama (Qpp,Cp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Geum urbanum (Epa.Cp,Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Rhamnus catharticus (Qpp,Pru)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Fraxinus excelsior (Qpp,T,Ai)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Poa nemoralis (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>Campanula persicifolia (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Platanthera bifolia (Qpp,PQ,NC,Moa)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Populus tremula (Qr,Qc,Ber)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>Veronica hederifolia (Sea)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Campanula rapunculoides (Qpp,Epa)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Carex divulsa</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Cornus sanguinea (Qpp)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Corylus avellana (Qpp)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Heracleum sphondylium (Qpp,MoA)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Lapsana communis (GA,Epa)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Melica nutans (Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Vicia sepium (Ara,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>Fagelata sylvaticaet</td>
<td>Cerasus avium (Cp)</td>
<td>A2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>70</td>
</tr>
<tr>
<td>Species</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>A-D</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Cardamine impatiens</td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Moehringia trinervia</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Carpinus betulus (Cp)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Dryopteris filix-mas s.str.</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Knautia drymeia (Cp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Tilia platyphyllos (TA,Qpp)</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Corydalis pumila (Cp,Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Epilobium montanum (Qr,PQ,Epa)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Hedera helix</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Pimpinella major (Ara,Al,Qr,FiC)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Ribes uva-crispa (Ai,TA,Pru)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Sorbus aucuparia (Qr,Qpp,VP)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Alnion incanae</td>
<td></td>
</tr>
<tr>
<td>Frangula alnus (Ate,Qr,PQ)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ribes rubrum ssp. sylvestre</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Festuca gigantea (Cal,Epa)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Tilio platyphyllae-Acerenion pseudoplatani</td>
<td></td>
</tr>
<tr>
<td>Geranium lucidum (GA)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Cystopteris fragilis (AFe)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Aremonio-Fagion</td>
<td></td>
</tr>
<tr>
<td>Luzula forsteri (Qfa,ECp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Quercetalia roboris</td>
<td></td>
</tr>
<tr>
<td>Veronica officinalis (PQ,NC,PP,Epa)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Hieracium sylvaticum (PQ,QF,Qpp,Epa)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Hieracium umbellatum (PQ,Qpp,NC,PP,Epa)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Quercion robori-petraeae</td>
<td></td>
</tr>
<tr>
<td>Viscaria vulgaris (PQ,Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Quercetea pubescentis-petraeae</td>
<td></td>
</tr>
<tr>
<td>Polygonatum odoratum (Fvl)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
</tr>
<tr>
<td>Quercus cerris (Qr,PQ)</td>
<td>A1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
</tbody>
</table>

Notes:
- Cardamine impatiens: A-D = IV, % = 70
- Moehringia trinervia: A-D = III, % = 60
- Carpinus betulus (Cp): B1 = I, % = 10
- B2 = III, % = 50
- Dryopteris filix-mas s.str.: C = II, % = 40
- Knautia drymeia (Cp): C = I, % = 20
- Tilia platyphyllos (TA,Qpp): B2 = I, % = 10
- Corydalis pumila (Cp,Qpp): C = I, % = 10
- Epilobium montanum (Qr,PQ,Epa): I, % = 10
- Hedera helix: B2 = I, % = 10
- Pimpinella major (Ara,Al,Qr,FiC): C = I, % = 10
- Ribes uva-crispa (Ai,TA,Pru): B1 = I, % = 10
- B2 = I, % = 10
- Sorbus aucuparia (Qr,Qpp,VP): B1 = I, % = 10
- Frangula alnus (Ate,Qr,PQ): B1 = I, % = 10
- Ribes rubrum ssp. sylvestre: B1 = I, % = 10
- Festuca gigantea (Cal,Epa): C = I, % = 10
- Geranium lucidum (GA): C = II, % = 30
- Cystopteris fragilis (AFe): C = I, % = 10
- Luzula forsteri (Qfa,ECp): C = I, % = 10
- Veronica officinalis (PQ,NC,PP,Epa): C = IV, % = 80
- Hieracium sylvaticum (PQ,QF,Qpp,Epa): C = IV, % = 70
- Hieracium umbellatum (PQ,Qpp,NC,PP,Epa): C = II, % = 30
- Viscaria vulgaris (PQ,Qpp): C = I, % = 20
- Polygonatum odoratum (Fvl): C = V, % = 100
- Quercus cerris (Qr,PQ): A1 = 1, I = 10
- A2 = III, % = 60
<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A-D</th>
<th>K %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidago virga-aurea (NC,Epa,Qr,PQ)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>+1</td>
<td>IV</td>
</tr>
<tr>
<td>Teucrium chamaedrys (FBt,EP)</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>+2</td>
<td>V</td>
</tr>
<tr>
<td>Astragalus glycyphyllos</td>
<td>C</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-2</td>
<td>V</td>
</tr>
<tr>
<td>Lembotropis nigricans (Qr,PQ,CU)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>V</td>
</tr>
<tr>
<td>Peucedanum oreoselinum</td>
<td>C</td>
<td>2</td>
<td>+</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>+4</td>
<td>V</td>
</tr>
<tr>
<td>Prunus spinosa (Pru,Pru)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Prunus spinosa (Pru,Pru)</td>
<td>B2</td>
<td>+</td>
<td>V</td>
</tr>
<tr>
<td>Pyrus pyraster (Cp)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Pyrus pyraster (Cp)</td>
<td>B1</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1</td>
<td>III</td>
</tr>
<tr>
<td>Pyrus pyraster (Cp)</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Rosa canina agg. (Pru,Pru)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Asparagus officinalis (FBt)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Fraxinus ornus (OCa)</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Fraxinus ornus (OCa)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Fraxinus ornus (OCa)</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Viola hirta</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>IV</td>
</tr>
<tr>
<td>Silene nutans</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>III</td>
</tr>
<tr>
<td>Berberis vulgaris (Pru)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-1</td>
<td>II</td>
</tr>
<tr>
<td>Cephalanthera rubra (F)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Sorbus torminalis (QF)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Sorbus torminalis (QF)</td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
</tr>
<tr>
<td>Malus sylvestris (Ai,Cp)</td>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Malus sylvestris (Ai,Cp)</td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Trifolium alpestre (Fvl)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Euonymus verrucosa (Pru)</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Euonymus verrucosa (Pru)</td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Inula conyza</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Origanum vulgare (Pru)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Silene viridiflora</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Thalictrum minus (Fvl)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td>Vincetoxicum hirundinaria (Fvl)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Quercetalia cerris</td>
<td></td>
</tr>
<tr>
<td>Gagea pratensis (Sea)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Erico-Pinetea (incl. Erico-Pinetalia et Erico-Pinion)</td>
<td></td>
</tr>
<tr>
<td>Pinus sylvestris (PP,PQ,Qr)</td>
<td>A1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3-4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-1-3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+1-1</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3-5</td>
<td>V</td>
</tr>
<tr>
<td>Indifferens</td>
<td></td>
</tr>
<tr>
<td>Calamagrostis epigeios (MoJ,Fvg,Epa)</td>
<td>C</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+ +-2</td>
<td>V</td>
</tr>
<tr>
<td>Euphorbia cyparissias (FB,ChS,Epa,Qpp)</td>
<td>C</td>
<td>+</td>
<td>V</td>
</tr>
<tr>
<td>Hypericum perforatum (NC,FB,Qpp,PP)</td>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>Juniperus communis (NC,Fvg,Qpp,EP,PP)</td>
<td>B1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+ +2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+ +2</td>
<td>V</td>
</tr>
<tr>
<td>Pimpinella saxifraga (MoA,FPt,Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus fruticosus agg. (QF,Epa,US)</td>
<td>B1</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>+ +2</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>+ +2</td>
<td>V</td>
</tr>
<tr>
<td>Tragopogon orientalis (Ara,FB,ChS,Qpp)</td>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>Coronilla varia (Ara,FBt,Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Galium aparine (Sea,Epa,QF)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Galium verum (MoJ,FB,Qpp)</td>
<td>C</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Poa angustifolia (Ara,FPlt,Ft,ChS,Qpp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>1-</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+ +</td>
<td>IV</td>
</tr>
<tr>
<td>Stellaria media (ChS,QF,Spu)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>Leontodon hispidus (MoA,FB,Ate,Qpp)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Agrostis stolonifera (Pte,MoJ,FPe,Bia,Pla)</td>
<td>C</td>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+2</td>
</tr>
<tr>
<td>Cerastium fontanum (MoA,FBt,Sea,Epa)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eryngium campestrce (FB,CyF,ChS)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Plantago lanceolata (MoA,CHS)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus caesium (Spu)</td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rumex acetosella (NC,KC,FVl,Qp,Qp)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Taraxacum officinale (MoA,FPe,Cyf,ChS)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urtica dioica (Ar,GA,Epa,Spu)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Berteroa incana (Fvl,CyF,Che)</td>
<td>C</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chelidonium majus (Che,Ar,GA,Epa)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Echium vulgare (SS,Ft,ChS)</td>
<td>C</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Galium mollugo (MoA,FBt,Qpp,Qu)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Luzula campestris (NC,MoJ,Ara,Qu,QuP)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dactylis glomerata (MoA,FB,Che,Pla,Qu)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1-2</td>
<td>II</td>
<td>40</td>
</tr>
<tr>
<td>Potentilla impolita (FB,ArF,Ona,Qu)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

38
<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A-D</th>
<th>K</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthriscus cerefolium (Ar,GA)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra (Epa,US,QF)</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Agrimonía eupatoria (FBt,Qpp)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Arenaria serpyllifolia (KC,FB,ChS)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carex hirta (Pte,MoA,Pla)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Crepis rhoeadifolia (Fvl,Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Silene vulgaris (Ara,Fvl,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Agropyron repens (MoA,FPi,FB,ChS,Pla)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ajuga genevensis (Ara,FBt,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium scorodoprasum (Qpp,Sea,Che)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium vineale (Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convolvulus arvensis (ChS)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crucia laevipes (Arn,Fru,Ar,GU,Qpp)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gypsophila muralis (IN,FPe,Sea,Bia)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hieracium pilosella agg. (NC,Ara,FB,Qr,PQ)</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus sardous (MoA,Pla,Sea,Nc,FPi)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium arvense (SC,FB,Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valerianella locusta (FBt,Alo,Sea)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbasco phlomoides (FBt,Sea,Che)</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbascum phoeniceum (FBt,Sea,Che)</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Adventiva (incl. Culta, Subspontanea et Indigena)</td>
<td></td>
</tr>
<tr>
<td>Erigeron canadensis</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>II</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Robinia pseudo-acacia</td>
<td>A2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+1</td>
<td>II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Solidago gigantea ssp. serotina</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>I</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celtis occidentalis</td>
<td>B2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juglans regia</td>
<td>B1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenactis annua</td>
<td>C</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vulpina</td>
<td>B2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>I</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.b táblázat: *Festuco vaginatae-Pinetum sylvestris* (E906)

Hely: 1-10: Fenyőfő "Ősfenyves"; **Álapkőzet:** 1-10: homok; **Talaj:** rozsdabarna erdőtalaj

Felvételt készítette: 1-10: Kevey (ined.).

<table>
<thead>
<tr>
<th>Felvételi adatok</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minta felvételi sorszáma</td>
<td>1613</td>
<td>1614</td>
<td>1615</td>
<td>1616</td>
<td>1617</td>
<td>3215</td>
<td>3216</td>
<td>3217</td>
<td>3218</td>
<td>3219</td>
</tr>
<tr>
<td>Felvételi időpont 1.</td>
<td>04.12</td>
<td>04.12</td>
<td>04.12</td>
<td>04.12</td>
<td>04.12</td>
<td>04.25</td>
<td>04.25</td>
<td>04.25</td>
<td>04.25</td>
<td>04.25</td>
</tr>
<tr>
<td>Felvételi időpont 2.</td>
<td>06.26</td>
<td>06.26</td>
<td>06.26</td>
<td>06.26</td>
<td>06.26</td>
<td>07.31</td>
<td>07.31</td>
<td>07.31</td>
<td>07.31</td>
<td>07.30</td>
</tr>
<tr>
<td>Felvételi időpont 3.</td>
<td>06.09</td>
</tr>
<tr>
<td>Felvételi időpont 4.</td>
<td>08.21</td>
</tr>
<tr>
<td>Tengerszint feletti magasság (m)</td>
<td>268</td>
<td>270</td>
<td>270</td>
<td>242</td>
<td>240</td>
<td>266</td>
<td>250</td>
<td>258</td>
<td>260</td>
<td>250</td>
</tr>
<tr>
<td>Kittenesség</td>
<td>-</td>
<td>-</td>
<td>ÉK</td>
<td>Ny</td>
<td>ÉNy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lejtőszög (fok)</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Felső lombkoronaszint borítása (%)</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Alsó lombkoronaszint borítása (%)</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Cserjeszint borítása (%)</td>
<td>35</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>5</td>
<td>30</td>
<td>10</td>
<td>35</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Újulat borítása (%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1.5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Gyepszint borítása (%)</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Mohaszint borítása (%)</td>
<td>35</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>60</td>
<td>50</td>
<td>25</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Felső lombkoronaszint magassága (m)</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Alsó lombkoronaszint magassága (m)</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Cserjeszint magassága (cm)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Átlagos törzsátmérő (cm)</td>
<td>45</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>45</td>
<td>50</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Faállomány kora (év)</td>
<td>95</td>
<td>100</td>
<td>65</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Felvételi terület nagysága (m²)</td>
<td>1600</td>
</tr>
</tbody>
</table>
2. táblázat: A karakterfajok csoportrészesedése (%) a homoki erdeifenyvesben (*Festuco vaginatae-Pinetum*)

<table>
<thead>
<tr>
<th>SZÜNTAXON</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYPERO-PHRAGMITEA</td>
<td>0,0</td>
</tr>
<tr>
<td>PHRAGMITEA</td>
<td>0,2</td>
</tr>
<tr>
<td>Magnocaricetalia (incl. Magnocaricion)</td>
<td>0,1</td>
</tr>
<tr>
<td>PHRAGMITEA összesen</td>
<td>0,3</td>
</tr>
<tr>
<td>CYPERO-PHRAGMITEA összesen</td>
<td>0,3</td>
</tr>
<tr>
<td>MOLINIO-ARRHENATHEREA</td>
<td>2,2</td>
</tr>
<tr>
<td>MOLINIO-JUNCETEA</td>
<td>0,6</td>
</tr>
<tr>
<td>Molinietalia coeruleae</td>
<td>0,1</td>
</tr>
<tr>
<td>Alopecurion pratensis</td>
<td>0,2</td>
</tr>
<tr>
<td>Molinietalia coeruleae összesen</td>
<td>0,3</td>
</tr>
<tr>
<td>MOLINIO-JUNCETEA összesen</td>
<td>0,9</td>
</tr>
<tr>
<td>ARRHENATHERETEA (incl. Arrhenatheretalia)</td>
<td>1,7</td>
</tr>
<tr>
<td>Arrhenatherion elatioris</td>
<td>0,6</td>
</tr>
<tr>
<td>ARRHENATHERETEA összesen</td>
<td>2,3</td>
</tr>
<tr>
<td>NARDO-CALLUNETEA (incl. Nardetalia et Nardo-Agrostion tenuis)</td>
<td>1,4</td>
</tr>
<tr>
<td>CALLUNO-ULICETEA (incl. Vaccinio-Genistetalia et Calluno-Genistion)</td>
<td>0,3</td>
</tr>
<tr>
<td>MOLINIO-ARRHENATHEREA összesen</td>
<td>7,1</td>
</tr>
<tr>
<td>Puccinellio-Salicornea</td>
<td>0,0</td>
</tr>
<tr>
<td>FESTUCO-PuccinelliiETEA</td>
<td>0,2</td>
</tr>
<tr>
<td>Festuco-Puccinelliietalia</td>
<td>0,2</td>
</tr>
<tr>
<td>Artemisio-Festucetalia pseudovinae (incl. Festucion pseudovinae)</td>
<td>0,3</td>
</tr>
<tr>
<td>FESTUCO-PuccinelliiETEA összesen</td>
<td>0,7</td>
</tr>
<tr>
<td>Puccinellio-Salicornea összesen</td>
<td>0,7</td>
</tr>
<tr>
<td>SEDO-CORYNEPHOREA</td>
<td>0,0</td>
</tr>
<tr>
<td>KOELERIO-CORYNEPHORETEA (incl. Corynephoretalia)</td>
<td>1,1</td>
</tr>
<tr>
<td>Thero-Airion</td>
<td>0,2</td>
</tr>
<tr>
<td>KOELERIO-CORYNEPHORETEA összesen</td>
<td>1,3</td>
</tr>
<tr>
<td>SEDO-Scleranthetetica (incl. Sedo-Scleranthetalia et Alysso-Sedion)</td>
<td>0,5</td>
</tr>
<tr>
<td>SEDO-CORYNEPHOREA összesen</td>
<td>1,8</td>
</tr>
<tr>
<td>Festucetetria VAGINATAE (incl. Festucetalia vaginatae et Festucion vaginatae)</td>
<td>5,8</td>
</tr>
<tr>
<td>Festuco-Brometetia</td>
<td>6,2</td>
</tr>
<tr>
<td>Festucetalia valesiaceae</td>
<td>5,7</td>
</tr>
<tr>
<td>Bromo-Festucion pallentis</td>
<td>0,3</td>
</tr>
<tr>
<td>Asplenio-Festucion pallentis</td>
<td>0,1</td>
</tr>
<tr>
<td>Festucion rupicolae</td>
<td>2,1</td>
</tr>
<tr>
<td>Cynodonto-Festucetetia</td>
<td>0,6</td>
</tr>
<tr>
<td>SZÜNTAXON</td>
<td>%</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Festucion rupicolae összesen</td>
<td>2,7</td>
</tr>
<tr>
<td>Festucetalia valesiaceae összesen</td>
<td>8,8</td>
</tr>
<tr>
<td>Brometalia erecti (incl. Cirsi-Brachypodion)</td>
<td>0,2</td>
</tr>
<tr>
<td>FESTUCO-BROMETEAE összesen</td>
<td>15,2</td>
</tr>
<tr>
<td>FESTUCO-BROMEA összesen</td>
<td>24,6</td>
</tr>
<tr>
<td>CHENOPODIO-SCLERANTHEA</td>
<td>1,6</td>
</tr>
<tr>
<td>SECALIETEA</td>
<td>1,4</td>
</tr>
<tr>
<td>Aperetalia (incl. Aphanion)</td>
<td>0,1</td>
</tr>
<tr>
<td>Secalietalia</td>
<td>0,0</td>
</tr>
<tr>
<td>Caucaolidion platycarpos</td>
<td>0,3</td>
</tr>
<tr>
<td>Secalietalia összesen</td>
<td>0,3</td>
</tr>
<tr>
<td>SECALIETEA összesen</td>
<td>1,8</td>
</tr>
<tr>
<td>CHENOPODIETEA</td>
<td>1,0</td>
</tr>
<tr>
<td>Sisymbrietalia</td>
<td>0,0</td>
</tr>
<tr>
<td>Artemisio-Agropyron intermedii</td>
<td>0,1</td>
</tr>
<tr>
<td>Sisymbrietalia összesen</td>
<td>0,1</td>
</tr>
<tr>
<td>Onopordetalia</td>
<td>0,1</td>
</tr>
<tr>
<td>CHENOPODIETEA összesen</td>
<td>1,2</td>
</tr>
<tr>
<td>ARTEMISIETEA (incl. Artemisietalia et Arction lappae)</td>
<td>0,5</td>
</tr>
<tr>
<td>GALIO-URTICETEA (incl. Calystegietalia sepium)</td>
<td>0,0</td>
</tr>
<tr>
<td>Galio-Alliarion</td>
<td>1,2</td>
</tr>
<tr>
<td>Calystegion sepium</td>
<td>0,2</td>
</tr>
<tr>
<td>GALIO-URTICETEA összesen</td>
<td>1,4</td>
</tr>
<tr>
<td>BIDENTETEA (incl. Bidentetalia)</td>
<td>0,2</td>
</tr>
<tr>
<td>PLANTAGINETEA (incl. Plantaginetalia majoris)</td>
<td>0,3</td>
</tr>
<tr>
<td>EPILIOBIETEA ANGUSTIFOLII (incl. Epilobietalia)</td>
<td>3,3</td>
</tr>
<tr>
<td>URTICO-SAMBUCETEA (incl. Sambucetalia et Sambuco-Salicion capreae)</td>
<td>0,4</td>
</tr>
<tr>
<td>CHENOPODIO-SCLERANTHEA összesen</td>
<td>10,7</td>
</tr>
<tr>
<td>QUERCO-FAGEA</td>
<td>0,0</td>
</tr>
<tr>
<td>SALICETEA PURPUREAE (incl. Salicetalia purpureae)</td>
<td>0,7</td>
</tr>
<tr>
<td>Salicion albae</td>
<td>0,1</td>
</tr>
<tr>
<td>SALICETEA PURPUREAE összesen</td>
<td>0,8</td>
</tr>
<tr>
<td>ALNETEA GLUTINOSAE (incl. Alnetalia glutinosae)</td>
<td>0,4</td>
</tr>
<tr>
<td>QUERCO-FAGETEA</td>
<td>8,1</td>
</tr>
<tr>
<td>Fagetalia sylvaticae</td>
<td>3,3</td>
</tr>
<tr>
<td>Alnion incanae</td>
<td>0,7</td>
</tr>
<tr>
<td>Alnion glutinosae-incanae</td>
<td>0,2</td>
</tr>
<tr>
<td>Alnion incanae összesen</td>
<td>0,9</td>
</tr>
<tr>
<td>Fagion sylvaticae</td>
<td>0,0</td>
</tr>
<tr>
<td>Carpinchnion betuli</td>
<td>2,4</td>
</tr>
<tr>
<td>Tilio platyphyllae-Acerenion pseudoplatani</td>
<td>0,5</td>
</tr>
<tr>
<td>SZŰNTAXON</td>
<td>%</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Fagion sylvaticae összesen</td>
<td>2,9</td>
</tr>
<tr>
<td>Aremonio-Fagion</td>
<td>0,1</td>
</tr>
<tr>
<td>Erythronio-Carpinencion betuli</td>
<td>0,1</td>
</tr>
<tr>
<td>Aremonio-Fagion összesen</td>
<td>0,2</td>
</tr>
<tr>
<td>Fagietalia sylvaticae összesen</td>
<td>7,3</td>
</tr>
<tr>
<td>Quercetalia roboris</td>
<td>1,8</td>
</tr>
<tr>
<td>Quercion robori-petraeae</td>
<td>0,8</td>
</tr>
<tr>
<td>Castaneo-Quercenion</td>
<td>0,1</td>
</tr>
<tr>
<td>Quercion robori-petraeae összesen</td>
<td>0,9</td>
</tr>
<tr>
<td>Quercetalia roboris összesen</td>
<td>2,7</td>
</tr>
<tr>
<td>QUERCO-FAGETEA összesen</td>
<td>18,1</td>
</tr>
<tr>
<td>QUERCETEA PUBESCENTIS-PETRAEAE</td>
<td>22,1</td>
</tr>
<tr>
<td>Orno-Cotinetalia</td>
<td>0,4</td>
</tr>
<tr>
<td>Quercion farnetto</td>
<td>0,1</td>
</tr>
<tr>
<td>Orno-Cotinetalia összesen</td>
<td>0,5</td>
</tr>
<tr>
<td>Quercetalia cerris</td>
<td>0,1</td>
</tr>
<tr>
<td>Quercion petraeae</td>
<td>0,1</td>
</tr>
<tr>
<td>Aceri tatarici-Quercion</td>
<td>0,3</td>
</tr>
<tr>
<td>Quercetalia cerris összesen</td>
<td>0,5</td>
</tr>
<tr>
<td>Prunetalia spinosae</td>
<td>1,7</td>
</tr>
<tr>
<td>Berberidion</td>
<td>0,1</td>
</tr>
<tr>
<td>Prunetalia spinosae összesen</td>
<td>1,8</td>
</tr>
<tr>
<td>QUERCETEA PUBESCENTIS-PETRAEAE összesen</td>
<td>24,9</td>
</tr>
<tr>
<td>QUERCO-FAGEA összesen</td>
<td>44,2</td>
</tr>
<tr>
<td>ABIETI-PICEEA</td>
<td>0,2</td>
</tr>
<tr>
<td>ERICO-PINETEA (incl. Erico-Pinetalia et Erico-Pinion)</td>
<td>0,8</td>
</tr>
<tr>
<td>PULSATILLO-PINETEA (incl. Pulsatillo-Pinetalia et Festuco vaginatae-Pinion)</td>
<td>0,8</td>
</tr>
<tr>
<td>VACCINIO-PICEETEA</td>
<td>0,2</td>
</tr>
<tr>
<td>Pino-Quercetalia (incl. Pino-Quercion)</td>
<td>2,0</td>
</tr>
<tr>
<td>VACCINIO-PICEETEA összesen</td>
<td>2,2</td>
</tr>
<tr>
<td>ABIETI-PICEEA összesen</td>
<td>4,0</td>
</tr>
<tr>
<td>INDIFFERENS</td>
<td>5,4</td>
</tr>
<tr>
<td>ADVENTIVA (incl. Culta, Subspontanea et Indigena)</td>
<td>1,3</td>
</tr>
</tbody>
</table>
3. táblázat: A szociális magatartási típusok csoportrészesedése a fenyőfői „Ősfenyves”-ben

<table>
<thead>
<tr>
<th>SBT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Társulás</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6</td>
<td>5,1</td>
<td>6,1</td>
<td>7,8</td>
<td>5,4</td>
<td>10,0</td>
<td>5,8</td>
<td>8,0</td>
<td>6,4</td>
<td>4,1</td>
<td>4,2</td>
</tr>
<tr>
<td>Su</td>
<td>10</td>
<td>0,0</td>
</tr>
<tr>
<td>Sr</td>
<td>8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>9,1</td>
<td>8,1</td>
<td>8,7</td>
<td>10,9</td>
<td>11,2</td>
<td>9,8</td>
<td>10,1</td>
<td>14,8</td>
<td>11,4</td>
<td>13,6</td>
</tr>
<tr>
<td>Cu</td>
<td>9</td>
<td>0,0</td>
</tr>
<tr>
<td>Cr</td>
<td>7</td>
<td>0,0</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>51,3</td>
<td>43,0</td>
<td>41,0</td>
<td>45,5</td>
<td>52,6</td>
<td>41,4</td>
<td>44,7</td>
<td>45,9</td>
<td>48,0</td>
<td>40,1</td>
</tr>
<tr>
<td>Gu</td>
<td>8</td>
<td>0,0</td>
</tr>
<tr>
<td>Gr</td>
<td>6</td>
<td>0,0</td>
</tr>
<tr>
<td>NP</td>
<td>3</td>
<td>4,2</td>
<td>4,0</td>
<td>3,4</td>
<td>1,8</td>
<td>3,7</td>
<td>3,9</td>
<td>5,0</td>
<td>3,2</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>DT</td>
<td>2</td>
<td>24,1</td>
<td>24,5</td>
<td>28,7</td>
<td>28,2</td>
<td>15,1</td>
<td>26,4</td>
<td>28,2</td>
<td>24,5</td>
<td>27,1</td>
<td>29,6</td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>2,5</td>
<td>9,2</td>
<td>3,4</td>
<td>5,4</td>
<td>3,7</td>
<td>8,8</td>
<td>2,0</td>
<td>3,2</td>
<td>3,1</td>
<td>7,3</td>
</tr>
<tr>
<td>I</td>
<td>-1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,9</td>
<td>0,0</td>
<td>1,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>A</td>
<td>-1</td>
<td>1,3</td>
<td>1,0</td>
<td>1,7</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RC</td>
<td>-2</td>
<td>1,3</td>
<td>3,0</td>
<td>1,7</td>
<td>1,8</td>
<td>2,5</td>
<td>1,9</td>
<td>2,0</td>
<td>1,1</td>
<td>2,1</td>
<td>3,1</td>
</tr>
<tr>
<td>AC</td>
<td>-3</td>
<td>1,3</td>
<td>1,0</td>
<td>1,7</td>
<td>0,0</td>
<td>1,9</td>
<td>0,0</td>
<td>1,1</td>
<td>2,1</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td>3,3</td>
<td>3,1</td>
<td>3,2</td>
<td>3,3</td>
<td>3,6</td>
<td>3,1</td>
<td>3,4</td>
<td>3,5</td>
<td>3,2</td>
<td>3,1</td>
</tr>
</tbody>
</table>

Rövidítések:
A1: felső lombkoronaszint; A2: alsó lombkoronaszint; AbP: Abieti-Piceea; AFe: Asplenio-Festucion pallentis; Agi: Alnion glutinosae-incanae; Ai: Alnion incanae; Alo: Alopecurion pratensis; AQ: Aceri tatarico-Quercion; Ar: Artemisietea; Ara: Arrhenatheretea; ArA: Artemisio-Agropyron intermedii; ArF: Artemisio-Festucetalia pseudovinae; Arn: Arrhenatherion elatioris; Ate: Alnetae glutinosae; B1: cserjeszint; B2: újulat; Ber: Berberidion; Bia: Bidenteta; Bra: Brometalia erecti; BrF: Bromo-Festucion pallentis; C: gyepszint; Cal: Calystegion sepium; Cau: Caulacodium platycarpus; Che: Chenopodietea; ChS: Chenopodio-Scleranthea; Cyp: Carpinetalia; Cu: Calluno-Ulicetea; CyF: Cynosorteo-Festucetalia; D: mohaszint; ECp: Erythronio-Carpinennion betuli; EP: Eriico-Pinetea; Epa: Epilobietea angustifolii; ex verb. (ex verbis): szobeli közlés; F: Fagetalia sylvaticae; FB: Festuco-Bromea; FBt: Festuco-Brometa; FiC: Filipendulo-Cirsion oleracei; FPe: Festuco-Puccinellieta; Fpi: Festuco-Puccinellietalia; Fru: Festucion ripulicaceae; Fvg: Festucetalia valesiacae; Ga: Galio-Alliarion; GA: Galio-Urticetea; I: Isoetoo-Nanojuncetalia; ined. (ineditum): kiadatlan közlés; KC: Koelerio-Corynephoretea; Mag: Magnocaricetalia; Moa: Molinietalia coerules; MoA: Molino-Arrenheretalia; MoJ: Molinio-Juncetalia; NC: Nardo-Callunetalia; Oc: Nanocyperion flavescens; OCa: Orno-Cotineta; Ona: Onopordetalia; Onn: Onopordion acanthii; P: Populo-Alliaceae; Pla: Plantaginetea; PP: Pulsatillo-Pinetea; PQ: Pino-Quercetalia; Pru: Prunetalia spinosa; Pte: Phragmietea; Qc: Quercetalia cerris; Qf: Querco-Fagetalia; Qfa: Querion farnetto; Qp: Quercion petraeae; Qpp: Quercetalia pubescentis-petraeae; Qr: Quercetalia roboris; Qrp: Quercion robori-petraeae; Sc: Sedo-Corynephoretea; Se: Secalietea; s.l. (sensu lato): tágabb értelmen; Spu: Salicion purpureae; SS: Sedo-Scleranthea; TA: Tilio platyphyllae-Acerenion pseudoplatani; TAI: Thero-Airion; Ulm: Ulmenion; US: Urtico-Sambuceta; VP: Vaccinio-Piceetalia.
Abstract: Butterfly and moth (Lepidoptera) fauna of rupicolous pannonic grasslands near Öskü (Bakony Mts., Hungary) – The author presents faunistic data of 752 Lepidoptera species from Öskü settlement in the Bakony Mts., Hungary (UTM grid code: BT72 and N47°09'; E18°04'). The dominate plant association of the Stipo eriocauli-Festucetum pallentis and Seseli leucospermi-Festucetum pallentis. The materials were collected by netting, lighting and portable light trap during 1979–2001. A brief ecological and conservational evaluation of the most interesting species Pterolonche inspersa STAUDINGER, 1859, Coleophora colutella (FABRICIUS, 1794), Eugnosta lathonia (HÜBNER, 1800), Udea lutealis (HÜBNER, 1809), Pyralis perversalis (HERRICH-SCHÄFFER, 1849), Pediasia kenderesiensis FAZEKAS, 1987, Zygaena fausta agilis REISS, 1932, Nychiodes obscuraria (VILLERS, 1789), Charissa intermedia (WEHRLI, 1917), Euphydryas aurinia (ROTTEMBURG, 1775), Euxoa vitta (ESPER, 1789) is presented. With one map, two photos and eight drawings.

Bevezetés

Az Északi-Bakonyhoz tartozó Veszprém-Devecseri-árok lepkefaunájának kutatását 1979-ben kezdtem el. A vizsgálatok megindítását az előbbiekben kivül az is indokolta, hogy
a magyarországi dolomitsziklagyepek lepkefaunáját (Micro- et Macrolepidoptera) csak részben ismerjük.

Az Öskü községet körül fogó dombvonulatokat felsőtriász korú (kb. 220 millió éves), ún. fődolomit építi fel. A fődolomit a Dunántúli-középhegység legvastagabb (1500–2000 m) és legáltalanosabban elterjedt képződménye. A dolomitnak igen lényeges tulajdonsága a mérőkövek szemben, hogy kémiailag szinte alig mállik, viszont fizikai aprózódása meghatározó. Állandóan mozgó felszínén a talajképződés igen lassú, melynek következtében összefüggő erdőtakaró nem alakult ki.

A Kárpát-medence florisztikailag leggazdagabb növénytársulásai a dolomitsziklagyepek, s a velük szoros kapcsolatban lévő sziklafüves lejtősztyepek. A nappali erős felmelegedést követően a dolomiton éjszaka magasabb a kisugárzás, s jelentősebb a lehűlés, mint a mészkő területeken. Mindez magyararázatot ad arra is, hogy miért élnek egymás mellett a különböző elterjedési centrumokból származó melegkedvelő és hidegtűrő flóra- valamint faunaelemek. Ez a korrespondencia különösen olyan topográfiai térben jelentkezik markánsan, ahol a szurdokok illetve a meredek északi lejtők váltakoznak a sokkal kedvezőbb relief energiájú, délre néző lejtőkkel.

JÁRAINÉ KOMLÓDI M. (2000) szerint a boreálisban a Kárpát-medencében megemelkedett hőmérséklet és a csökkent csapadék hatására kedvezővé vált a pontusi közép-ázsiai fajok bevándorlásának és elterjedésének lehetősége, a kiterjedt vált karszthyepesek és lejtősztyepek irányába. A mészkő és dolomit sziklafüves lejtőkről leereszkedett sztyepelemek keveredtek a délől benyomuló szubmediterrán karsztrókerdő és karszthyep elemekkel.

1. ábra: A vizsgálati terület elhelyezkedése Magyarország térképén

Fig. 1. Location of the examined areas on the map of Hungary
veszélyeztetett (pl. parcellázás, beépítés) ritka izolátumai. Az utóbbi évtizedekben végzett botanikai-ökológiai állapotfelmérések rámutattak arra, hogy e rendkívül értékes területeken csökkent a botanikai diverzitás, s fokozatosan beszűkülték a termőhelyek. Öskü környékén a degradáció legfőbb okozója a katonai gyakorlatokból eredő erőteljes tapaszt. A középhegység más pontjain a főbb okok a következők: bányászat, legeltetés, beépítés, katonai kiképzés, fásítások és a turizmus (KOVÁCS & TAKÁCS 1995).

Anyag és módszer

Eredmények

MICROLEPIDOPTERA

ADELIDAE
Nematopogon adansoniella (VILLERS, 1789)
Nemophora degeerella (LINNAEUS, 1758)

GELECHIDAE
Acompsia cinerella (CLERCK, 1759)
Anarsia linatella (ZELLER, 1839)
Aristotelia decurtella (HUBNER, 1813)
Aroga flavicomella (ZELLER, 1839)
Athrips nigricostella (DUPONCHEL, 1842)
Dichomeris limosella (SCHLAGER, 1849)
Dichomeris rasilella (HERRICH-SCHAFFER, 1854)
Eulamprotes wilkella (LINNAEUS, 1758)
(=pictella ZELLER, 1839)
Exoteleia dodecella (LINNAEUS, 1758)
Ilseopsis ocellatella (BOYD, 1858)
Isophritist striatella
([DENIS & SCHIFFERMÜLLER], 1775)
Metsneria paucipunctella (ZELLER, 1839)
Metzneria metzneriella (STANTON, 1851)
Mesophleps silacella (HUBNER, 1796)
Pexicopia malvella (HUBNER, 1805)
Recurvaria leucatella (CLERCK, 1759)
Recurvaria nanella
([DENIS & SCHIFFERMÜLLER], 1775)
Teleiodes paripunctella (THUNBERG, 1794)
Teleiodes scriptella (HUBNER, 1796)
(=vulgella [DENIS & SCHIFFERMÜLLER], 1775)

COSSIDAE
Cossus cossus (LINNAEUS, 1758)
Dyspessa ulula (BORKHAUSEN, 1790)
Zeuzera pyrina (LINNAEUS, 1761)

YPSOLOPHIDAE
Ipsolophia scabrella (LINNAEUS, 1761)

GRACILLARIIDAE
Aspillaptery tringipennella (ZELLER, 1839)
Caloptilia alchymiella (SCOPOLI, 1763)
Calybites phasianipennella (HUBNER, 1813)
Eucalybites auroguttella (STEVENS, 1835)

YPONOMEUTIDAE
Argyresthia bonnetella (LINNAEUS, 1758)
Argyresthia goedartella (LINNAEUS, 1758)
Argyresthia pruinella (CLECK, 1759)
Yponomeuta evonymella (LINNAEUS, 1758)
Yponomeuta plumbella
([DENIS & SCHIFFERMÜLLER], 1775)

PLUTELLIDAE
Eidophasia messingiella
(=flavella HUBNER, 1796)
Plutella orpimentella (LINNAEUS, 1758)
Rhigognostis hufnageli (ZELLER, 1839)

PTEROLONCHIDAE
Pterolonchus inspersa STAUDINGER, 1859

COLEOPHORIDAE
Coleophora alcyonipennella (KOLLAR, 1832)
Coleophora colutella (FABRICIUS, 1794)
(=crocinella TENSTROM, 1848)
Coleophora frischella (LINNAEUS, 1758)
Coleophora pixella ZELLER, 1849
Coleophora ornatipennella (HUBNER, 1796)

CARCINIDAE
Carcina quercana (FABRICIUS, 1775)

OECOPHORIDAE
Macrochila marginella
([DENIS & SCHIFFERMÜLLER], 1775)
(=rostrella HUBNER, 1796)
Pleurota aristella (LINNAEUS, 1767)
Pleurota pyropella
([DENIS & SCHIFFERMÜLLER], 1775)

SYMMOCIDAE
Apatema mediopallida WALSINGHAM, 1900

ELACHISTIDAE
Agonopterix alstroemeriana (CLERCK, 1759)
Agonopterix cnicella (TREITSCHKE, 1832)
Agonopterix kaekeritziana (LINNAEUS, 1767)
(=flavella HUBNER, 1796)
Agonopterix propinquella
(TREITSCHKE, 1833)
Depressaria pastinacella (DUPONCHEL, 1838)
(=heracliana auctt. nec LINNAEUS, 1758)
Ethmia bipunctella (FABRICIUS, 1775)
Ethmia dodece (HAWORTH, 1828)
(=decemguttella HUBNER, 1810)
Ethmia pusiella (LINNAEUS, 1758)
Ethmia quadriella (GOEZE, 1783)
(=funerella FABRICIUS, 1787)
Ethmia terminella FLETCHER, 1938
Exacertia preissseceri (REBEL, 1937)
Heinemannia festivella
([DENIS & SCHIFFERMÜLLER], 1775)
Luquetia lobella
([DENIS & SCHIFFERMÜLLER], 1775)
SCYTHRIDIDAE
Scythris vittella (COSTA, 1836)
(=restigerella ZELLER, 1839)

BLASTOBASIDAE
Blastobasis phycidella (ZELLER, 1839)

COSMOPTERIGIDAE
Eteobalea gronoviella (SCOPOLI, 1772)
(=serratella TREITSCHKE, 1833)
Etoabalea tririvella (?) ssp. bernhardiella
KASY, 1973
Limnaecia phragmitella STAINTON, 1851

ZYGAENIDAE
Zygaena purpuralis (BRÜNNICH, 1763)
Zygaena fausta agilis REISS, 1932
Zygaena carniolica flaveola (ESPER, 1786)
Zygaena loti ([DENIS & SCHIFFERMÜLLER], 1775)
Zygaena filipendulae polygalae (ESPER, 1783)
Jordanita globulariae (HÜBNER, 1793)
Adscita statices (LINNAEUS, 1758)

PSYCHIDAE
Megalophanes viciella ([DENIS & SCHIFFERMÜLLER], 1775)
Pachythelia villosella (OCHSENHEIMER, 1810)
Taleporia politella (OCHSENHEIMER, 1816)

TINEIDAE
Ateliotum hungaricellum ZELLER, 1839
Monopis monachella (HÜBNER, 1796)

CARPOSINIDAE
Carposia scirrhosella HERRICH-SCHÄFFER, 1853

TORTRICIDAE
Acleris bergmanniana (LINNAEUS, 1758)
Acleris forsskaleana (LINNAEUS, 1758)
Acleris variegana ([DENIS & SCHIFFERMÜLLER], 1775)
Aethes hartmanniana (CLERK, 1759)
Aethes margarotana (DUPONCHEL, 1836)
Aethes tesserana ([DENIS & SCHIFFERMÜLLER], 1775)
Agapeta hamana (LINNAEUS, 1758)
Agapeta zoegana (LINNAEUS, 1767)
Aleimma loeflingiana (LINNAEUS, 1758)
Ancylis achatana
([DENIS & SCHIFFERMÜLLER], 1775)
Ancylis paludana (BARRET, 1871)
Aphelia viburnana
([DENIS & SCHIFFERMÜLLER], 1775)
Archips xylosteana (LINNAEUS, 1758)
Archips podana (SCOPOLI, 1763)
Archips rosana (LINNAEUS, 1758)
Argyrotaenia ljungiana (THUNBERG, 1797)
(=pulchellana HAWORTH, 1811)
Celypha lacunana
([DENIS & SCHIFFERMÜLLER], 1775)
Celypha striana
([DENIS & SCHIFFERMÜLLER], 1775)
Choristoneura hebenstreitella (MÜLLER, 1764)
(=sorabiana HÜBNER, 1799)
Clepsis pallidana (FABRICIUS, 1776)
(=strigana HÜBNER, 1799)
Clepsis rurinana (LINNAEUS, 1758)
(=semlabana GUENÉE, 1845)
Clepsis spectrana (TREITSCHKE, 1830)
Cnephasia communana
(HERRICH-SCHÄFFER, 1851)
Cochylimorpha straminea (HAWORTH, 1811)
Cochylis hybridella (HÜBNER, 1813)
Cochylis posterana ZELLER, 1847
(=ambiguana TREITSCHKE, 1830)
Cydia genniferana (TREITSCHKE, 1835)
Cydia microgrammana (GUENÉE, 1845)
Cydia penkleriana
([DENIS & SCHIFFERMÜLLER], 1775)
(=splendana HÜBNER, 1799)
Cydia pomonella (LINNAEUS, 1758)
Cydia succedana
([DENIS & SCHIFFERMÜLLER], 1775)
Diceratura ostrinana (GUENÉE, 1845)
Endothenia oblongana
(HAWORTH, 1811)
(=sellana FROLICH, 1828)
Endothenia quadromaculana
(HAWORTH, 1811)
Epago ge grotiana (CLERCK, 1781)
Epiblema foenella (LINNAEUS, 1758)
Epiblema scutulana
([DENIS & SCHIFFERMÜLLER], 1775)
Epinotia festivana (HÜBNER, 1799)
Eucosma albidulana
(HERRICH-SCHÄFFER, 1851)
Eucosma cana (HAWORTH, 1811)
Eucosma conterminana
(HERRICH-SCHÄFFER, 1851)
Eucosma hohenwartiana
([DENIS & SCHIFFERMÜLLER], 1775)
Eucosma lugubrana (TREITSCHKE, 1830)
Eucosma metzneriana (TREITSCHKE, 1830)
Eucosma obumbratana
(LIENIG & ZELLER, 1846)
(=expallidana auct., nec HAWORTH, 1811)
Eucosma pupillana (CLERCK, 1759)
Eucosma tundrana (KENNEL, 1900)
Eugnosta lathonia (HÜBNER, 1800)
Eudemis profundana
([DENIS & SCHIFFERMÜLLER], 1775)
Eupoecilia angustana (HÜBNER, 1799)
Falseuncaria ruficiliana (HAWORTH, 1811)
Hedy dimidioalba (RETZIUS, 1783)
(=nubiferena HAWORTH, 1811)
Hedy pruinana (HÜBNER, 1799)
Lathronympha strigana (FABRICIUS, 1775)
Lobesia bicinctana (DUPOCHREL, 1844)
Neosphaleroptera nubilana (HÜBNER, 1799)
Notocelia cynosbatella (LINNAEUS, 1758)
Notocelia uddmanniana (LINNAEUS, 1758)
Pandemis cerasana (HÜBNER, 1786)
(=ribeana HÜBNER, 1799)
Pandemis dumetana (TREITSCHKE, 1835)
Pandemis heparana
([DENIS & SCHIFFERMÜLLER], 1775)
Pelochrista caecimaculana
(HERRICH-SCHÄFFER, 1851)
Periclepsis cinctana
([DENIS & SCHIFFERMÜLLER], 1775)
Phalonidia permixtana
([DENIS & SCHIFFERMÜLLER], 1775)
Phiaris schaefferana
(HERRICH-SCHÄFFER, 1847)
(=furfurana HERRICH-SCHÄFFER, 1851)
Philedone garnigiana
([DENIS & SCHIFFERMÜLLER], 1775)
Phtheochroa inopiana (HAWORTH, 1811)
Rhyacionia buoliana
([DENIS & SCHIFFERMÜLLER], 1775)
Rhyacionia pinicolora (DOUBLEDAY, 1849)
Sparganothis pilleriana
([DENIS & SCHIFFERMÜLLER], 1775)
Spilonota ocellana
([DENIS & SCHIFFERMÜLLER], 1775)
Thiodia citrana (HÜBNER, 1799)
Thiodia trochilana (FRÖHLICH, 1828)
(=delitanza FISCHER von RÖSSLERSTAMM, 1840)
Tortrix viridana LINNAEUS, 1758
Zeiraphera griseana (HÜBNER, 1799)
(=diniana Guèneé, 1845)
Zeiraphera isertana (FABRICIUS, 1794)

EPERMENIIDAE
Epermenia illigerella (HÜBNER, 1813)
Epermenia pontificella (HÜBNER, 1796)
Ochromolopis icella (HÜBNER, 1813)

PTEROPHORIDAE
Agdistis adactyla (HÜBNER, 1823)
Cnaemidophorus rhododactylus
([DENIS & SCHIFFERMÜLLER], 1775)
Emmelina monodactyla (LINNAEUS, 1758)
Wheeleria obsOLETA (ZELLER, 1841)
Porritia galactodactyla
([DENIS & SCHIFFERMÜLLER], 1775)

PYRALIDAE
Aphomia zelleri JOANNIS, 1932
Lamoria anella
([DENIS & SCHIFFERMÜLLER], 1775)
Paralipsa gularis (ZELLER, 1877)
Synapha punctalis (FABRICIUS, 1775)
Pyralis regalis
([DENIS & SCHIFFERMÜLLER], 1775)
Pyralis farinalis (LINNAEUS, 1758)
Pyralis perversalis
(HERRICH-SCHÄFFER, 1849)
Aglossa pinguinalis (LINNAEUS, 1758)
Actenia brunnalis (TREITSCHKE, 1829)
Actenia honestalis (TREITSCHKE, 1829)
Hypsopygia costalis (FABRICIUS, 1775)
Herculia rubidalis
([DENIS & SCHIFFERMÜLLER], 1775)
Endotricha flammalis
([DENIS & SCHIFFERMÜLLER], 1775)
Trachonitis cristella
([DENIS & SCHIFFERMÜLLER], 1775)
Pempellicia ornatella
([DENIS & SCHIFFERMÜLLER], 1775)
Khorassania compositella
(TREITSCHKE, 1835)
Selagia argyrella
([DENIS & SCHIFFERMÜLLER], 1775)
Selagia spadicella (HÜBNER, 1796)
Etiella zinckenella (TREITSCHKE, 1832)
Onocera semirubella (SCOPOLI, 1763)
Phycita ro borella
([DENIS & SCHIFFERMÜLLER], 1775)
Hypochalcia ahenella
([DENIS & SCHIFFERMÜLLER], 1775)
Conobathra tumidana
([DENIS & SCHIFFERMÜLLER], 1775)
Acrobasis consociella (HÜBNER, 1813)
Acrobasis obtusella (HÜBNER, 1796)
Eurhodope roSELLa (SCOPOLI, 1763)
Myelois circumvoluta (FOURCROY, 1785)
Euzophera bigella (ZELLER, 1848)
Nyctegretis lineana (FOURCROY, 1785)
Nyctegretis triangulella RAGONOT, 1901
Ancylosis oblittella (ZELLER, 1848)
Homoeosoma sinuella (FABRICIUS, 1794)
Homoeosoma nebulella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Phyctodes binavella (HÜBNER, 1813)
Plodia interpunctella (HÜBNER, 1813)
Anerastia lotella (HÜBNER, 1813)
Ematheudes punctella (TREITSCHKE, 1833)
Scoparia luteoralis (SCOPOLI, 1772)
Scoparia pyralella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Dipleurina lacustrata (PANCER, 1804)

CRAMBIĐAE
Calamotropha paludella (HÜBNER, 1824)
Chrysoteuchia culmella (LINNAEUS, 1758)
Crambus pascuella (LINNAEUS, 1758)
Crambus pratella (LINNAEUS, 1758)
Crambus lathonellus (ZINCKEN, 1817)
Crambus perllella (SCOPOLI, 1763)
Agriphila tristella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agriphila inquinatella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agriphila tolli pelsontius FAZEKAS, 1985
Catoptria pinella (LINNAEUS, 1758)
Catoptria falsella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Xanthocrambus saxonellus (ZINCKEN, 1820)
Chrysocrambus craterellus (SCOPOLI, 1763)
Thisanotia chrysonuchella (SCOPOLI, 1763)
Pediasia luteella ([DENIS & SCHIFFERMÜLLER], 1775)
Pediasia kenderesiensis FAZEKAS, 1987
Platytes cerusella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Platytes alpinella (HÜBNER, 1813)
Talis quercella ([DENIS & SCHIFFERMÜLLER], 1775)
Donacaula mucronella
 ([DENIS & SCHIFFERMÜLLER], 1775)
Elophila nymphaeata (LINNAEUS, 1758)
Acentria ephemera
 ([DENIS & SCHIFFERMÜLLER], 1775)
Cataclysta lemnata (LINNAEUS, 1758)
Parapoyx stratiotata (LINNAEUS, 1758)
Cynaedota dentalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Epascetria postulalis (HÜBNER, 1823)
Evergestis frumentalis (LINNAEUS, 1761)
Evergestis forficalis (LINNAEUS, 1758)
Evergestis extimalis (SCOPOLI, 1763)
Evergestis politalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Evergestis aenealis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Udea lutealis (HÜBNER, 1809)
Udea prunalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Udea accolalis (ZELLER, 1867)
Udea olivalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Opisobytus fuscalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Loxostege aeruginalis (HÜBNER, 1796)
Loxostege sticticalis (LINNAEUS, 1761)
Epyrrhorhoe rubiginalis (HÜBNER, 1796)
Pyrausta sanguinalis (LINNAEUS, 1767)
Pyrausta despicata (SCOPOLI, 1763)
Pyrausta purpuralis (LINNAEUS, 1758)
Pyrausta ostrinalis (HÜBNER, 1796)
Sitochoa verticalis (LINNAEUS, 1758)
Phlyctaenia coronata (HUFNAGEL, 1767)
Phlyctaenia perlucidalis (HÜBNER, 1809)
Algedonia terrealis (TREITSCHKE, 1829)
Psammotis pulveralis (HÜBNER, 1796)
Ostrinia nubilalis (HÜBNER, 1796)
Anania verbascalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Eurryxpara Hortulata (LINNAEUS, 1758)
Paratalanta pandalis (HÜBNER, 1825)
Paratalanta hyalinalis (HÜBNER, 1796)
Pleuroptya ruralis (SCOPOLI, 1763)
Mecyna flavalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Mecyna trinalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Dolicharthria punctalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Metasia ophialis (TREITSCHKE, 1829)
Nomophila noctuella ([Denis & Schiffermüller], 1775)

MACROLEPIDOPTERA

LASIOCAMPIDAE
Poecilocampa populi (LINNAEUS, 1758)
Trichiura crataegi (LINNAEUS, 1758)
Eriogaster lanestris (LINNAEUS, 1758)
Malacosoma neustria (LINNAEUS, 1758)
Malacosoma castrensis (LINNAEUS, 1758)
Lasiocampa trifoli (DENIS & SCHIFFERMÜLLER, 1775)
Macrolepidea rubra (LINNAEUS, 1758)
Dendrolimus pini (LINNAEUS, 1758)
Gastropacha quercifolia (LINNAEUS, 1758)
Odonestis pruni (LINNAEUS, 1758)

SATURNIIDAE
Saturnia pyri (DENIS & SCHIFFERMÜLLER, 1775)
Saturnia pavonia (LINNAEUS, 1758)
Saturnia spini (DENIS & SCHIFFERMÜLLER, 1775)

LEMONIIDAE
Lemonia dumi (LINNAEUS, 1761)
Lemonia taraxaci (DENIS & SCHIFFERMÜLLER, 1775)

SPHINGIDAE
Marumba quercus (DENIS & SCHIFFERMÜLLER, 1775)
Mimas tiliae (LINNAEUS, 1758)
Smerinthus ocellata (LINNAEUS, 1758)
Laetheo populi (LINNAEUS, 1758)
Agrius convolvuli (LINNAEUS, 1758)
Acherontia atropos (LINNAEUS, 1758)
Sphinx ligustri (LINNAEUS, 1758)
Hyloicus pinastri (LINNAEUS, 1758)
MacroGLOSSUM stellatarum (LINNAEUS, 1758)
Hyles euphorbiæ (LINNAEUS, 1758)
Hyles gallii (ROTTEMBURG, 1775)
Deilephila elpenor (LINNAEUS, 1758)
Deilephila porcellus (LINNAEUS, 1758)

HESPERIIDAE
Erynnis tages (LINNAEUS, 1758)
Spialia orbifer (HÜBNER, 1823)
Pyrgus carthami (HÜBNER, 1813)
Pyrgus malvae (LINNAEUS, 1758)
Heteropterus morpheus (PALLAS, 1771)
Carterocephalus palaemon (PALLAS, 1771)
Thymelicus lincola (OCHSENHEIMER, 1808)
Thymelicus sylvestris (PODA, 1761)
Hesperia comma (LINNAEUS, 1758)
Ochlodes venata (BREMER & GREY, 1853)

PAPILIONIDAE
Iphiclides podalirius (LINNAEUS, 1758)
Papilio machaon LINNAEUS, 1758

PIERIDAE
Leptidea sinapis (LINNAEUS, 1758)
Leptidea morsei (FENTON, 1881)
Anthocharis cardamines (LINNAEUS, 1758)
Pieris brassicae (LINNAEUS, 1758)
Pieris rapae (LINNAEUS, 1758)
Pieris ergane (GEYER, 1828)
Pieris napi (LINNAEUS, 1758)
Pontia daplidice (LINNAEUS, 1758)
Colias croceus (FOURCROY, 1785)
Colias chrysotheme (ESPER, 1784)
Colias hyale (LINNAEUS, 1758)
Colias alfacariensis RIBBE, 1905
Gonepteryx rhamni (LINNAEUS, 1758)

LYCAENIDAE
Hamearis lucina (LINNAEUS, 1758)
Lycaena dispar (HAWORTH, 1802)
Lycaena tityrus (PODA, 1761)
Lycaena thersamon (ESPER, 1784)
Thecla betulae (LINNAEUS, 1758)
Neozephyrus quercus (LINNAEUS, 1758)
Callophrys rubi (LINNAEUS, 1758)
Sathyrium spini (DENIS & SCHIFFERMÜLLER, 1775)
Cupido minimus (FUESSLY, 1775)
Cupido argiades (PALLAS, 1771)
Cupido decolorata (STAUDINGER, 1886)
Celastrina argiolus (LINNAEUS, 1758)
Pseudophilotes vicrama (MOORE, 1865)
Scolitantides orion (PALLAS, 1771)
Glaucopsyche alexis (PODA, 1761)
Maculinea arion (LINNAEUS, 1758)
Maculinea teleius (BERGSTRASSER, 1779)
Maculinea nausithous (BERGSTRASSER, 1779)
Plebeius argus (LINNAEUS, 1758)
Plebeius argyrognomon (BERGSTRASSER, 1779)
Aricia agestis (DENIS & SCHIFFERMÜLLER, 1775)
Polyommatus dorylas
 ([DENIS & SCHIFFERMÜLLER], 1775)
Polyommatus icarus (ROTTEMBURG, 1775)
Polyommatus daphnis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Polyommatus bellargus (ROTTEMBURG, 1775)
Polyommatus coridon (PODA, 1761)

NYMPHALIDAE
Argynnis paphia (LINNAEUS, 1758)
Argynnis aglaja (LINNAEUS, 1758)
Issoria lathonia (LINNAEUS, 1758)
Brenthis ino (ROTTEMBURG, 1775)
Brenthis daphne
 ([DENIS & SCHIFFERMÜLLER], 1775)
Brenthis hecate
 ([DENIS & SCHIFFERMÜLLER], 1775)
Boloria dia (LINNAEUS, 1758)
Vanessa atalanta (LINNAEUS, 1758)
Vanessa cardui (LINNAEUS, 1758)
Inachis io (LINNAEUS, 1758)
Aglaia urticae (LINNAEUS, 1758)
Polyogonia c-album (LINNAEUS, 1758)
Araschnia levana (LINNAEUS, 1758)
Euphydryas maturna (LINNAEUS, 1758)
Euphydryas aurinia (ROTTEMBURG, 1775)
Melitaea phoebe
 ([DENIS & SCHIFFERMÜLLER], 1775)
Melitaea trivia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Melitaea didyma (ESPER, 1778)
Melitaea aurelia NICKERL, 1850
Melitaea athalia (ROTTEMBURG, 1775)
Pararge aegeria (LINNAEUS, 1758)
Lasionomata megera (LINNAEUS, 1767)
Lasionomata maera (LINNAEUS, 1758)
Coenonympha arcania (LINNAEUS, 1761)
Coenonympha glycerion (BORKHAUSEN, 1788)
Coenonympha pamphilus (LINNAEUS, 1758)
Maniola jurtina (LINNAEUS, 1758)
Melanargia galathea (LINNAEUS, 1758)
Minois dryas (SCOPOLI, 1763)
Hipparchia fagi (SCOPOLI, 1763)
Arethusaana arethusa ([DENIS & SCHIFFERMÜLLER], 1775)
Brintesia circe (FABRICIUS, 1775)
Chazara briseis (LINNAEUS, 1764)

DRESPANIDAE
Thyatira batis (LINNAEUS, 1758)
Habrosyne pyritoides (HUFNAGEL, 1767)

Tethea ocellaris (LINNAEUS, 1767)
Cymatophorima diluta
 ([DENIS & SCHIFFERMÜLLER], 1775)
Watsonalla binaria (HUFNAGEL, 1767)
Drepana falcataaria (LINNAEUS, 1758)
Cilix glauca (SCOPOLI, 1763)

GEOMETRIDAE
Abraxas grossulariata (LINNAEUS, 1758)
Lomaspinus marginata (LINNAEUS, 1758)
Heliomata glarearia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Macaria notata (LINNAEUS, 1758)
Macaria alternata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Macaria liturata (CLERCK, 1759)
Macaria artesiaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Chiasmia clathrata (LINNAEUS, 1758)
Tephrina minaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Tephrina arenacea
 ([DENIS & SCHIFFERMÜLLER], 1775)
Opisthograptis luteolata (LINNAEUS, 1758)
Therapis flavicaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Pseudopanthera macularia (LINNAEUS, 1758)
Apeira syringaria (LINNAEUS, 1758)
Ennomos fuscantaria (HAWORTH, 1809)
Selenia lunularia (HUHNBER, 1788)
Artiora evonymaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Crocallis elinguaria (LINNAEUS, 1758)
Colotois pennaria (LINNAEUS, 1761)
Angerona prunaria (LINNAEUS, 1758)
Lycia hirtaria (CLERCK, 1759)
Lycia zonaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Biston strataria (HUFNAGEL, 1767)
Biston betularia (LINNAEUS, 1758)
Agriopis leucophaearia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agriopis bajaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agriopis aurantiaria (HUBNER, 1799)
Agriopis marginaria (FABRICIUS, 1776)
Erannis defoliaria (CLERCK, 1759)
Nychiodes obscuraria (VILLERS, 1789)
Synopsia sociaria (HÜBNER, 1799)
Peribatodes rhomboidaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Selidosema plumaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Clera cinctaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Hypomecis roboraria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Ascotis selenaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Ectropis crepuscularia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Ematurga atomaria (LINNAEUS, 1758)
Tephronia sepiaria (HUFNAGEL, 1769)
Cabra pusaria (LINNAEUS, 1758)
Cabra exanthemata (SCOPOLI, 1763)
Campea margaritata (LINNAEUS, 1767)
Odontognophos dumetata
 (TREITSCHKE, 1827)
Charissa obscurata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Neognophina intermedia (WEHRLI, 1917)
Aspitates gilvaria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Alosophila aescularia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Comibaena bajularia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Antonechloris smaragdaria (FABRICIUS, 1787)
Chlorissa viridata (LINNAEUS, 1758)
Chlorissa cloraria (HÜBNER, 1813)
Chlorissa etruscaria (ZELLER, 1849)
Thalera fimbrialis (SCOPOLI, 1763)
Cyclophora ruficiliaria
 (HERRICH-SCHÄFFER, 1855)
Cyclophora punctaria (LINNAEUS, 1758)
Scopula immorata (LINNAEUS, 1758)
Scopula virgulata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Scopula ornata (SCOPOLI, 1763)
Scopula decorata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Scopula rubiginata (HUFNAGEL, 1767)
Scopula marginipunctata (GOEZE, 1781)
Scopula incanata (LINNAEUS, 1758)
Scopula immaculata (LINNAEUS, 1758)
Scopula flaccidaria (ZELLER, 1852)
Idaea rufaria (HÜBNER, 1799)
Idaea sericeata (HÜBNER, 1813)
Idaea aureolaria ([DENIS & SCHIFFERMÜLLER], 1775)
Idaea rusticata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Idaea filicata (HÜBNER, 1799)
Idaea sylvestaria (HÜBNER, 1799)
Idaea inquinata (SCOPOLI, 1763)
Idaea dilutaria (HÜBNER, 1799)
Idaea humiliata (HUFNAGEL, 1767)
Idaea seriata (SCHRANK, 1802)
Idaea dimidiata (HUFNAGEL, 1767)
Idaea subsericeata (HAWORTH, 1809)
Idaea rubaria (STAUDINGER, 1901)
Idaea degeneraria (HÜBNER, 1799)
Rhopostaphy vibicaria (CLERCK, 1759)
Lythria purpuraria (LINNAEUS, 1758)
Catacymsme riguata (HÜBNER, 1813)
Phibalapteryx virgata (HUFNAGEL, 1767)
Scotopteryx. moeniata (SCOPOLI, 1763)
Scotopteryx chenopodiata (LINNAEUS, 1758)
Scotopteryx mucronata (SCOPOLI, 1763)
Scotopteryx luridata (HUFNAGEL, 1767)
 (=plumbaria FABRICIUS, 1775)
Orthonama obstipata (FABRICIUS, 1794)
Xanthorhoe spadicearia
 ([DENIS & SCHIFFERMÜLLER], 1775)
Xanthorhoe ferrugata (CLERCK, 1759)
Xanthorhoe fluctuata (LINNAEUS, 1758)
Catarrhoe cuculata (HUFNAGEL, 1767)
Epirrhoe tristata (LINNAEUS, 1758)
Epirrhoe alternata (MÜLLER, 1764)
Epirrhoe rivata (HÜBNER, 1813)
Costaconvexa polygrammata
 (BORKHAUSEN, 1794)
Camptogramma bilineata (LINNAEUS, 1758)
Pelurga comitata (LINNAEUS, 1758)
Cosmorhoe ocellata (LINNAEUS, 1758)
Nebula salicata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Eulithis pyraliata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Cidaria fulvata (FORSTER, 1771)
Hydriomena furcata (THUNBERG, 1784)
Horisme vitalbata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Melanthia procellata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Philereme vetulata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Philereme transversata (HUFNAGEL, 1767)
Euphryia frustata (TREITSCHKE, 1828)
Operophtera brumata (LINNAEUS, 1758)
Operophtera fagata (SCHARFENBERG, 1805)
Perizoma alchemillata (LINNAEUS, 1758)
Perizoma bifaciata (HAWORTH, 1809)
Eupithecia haworthiata DOUBLEDay, 1856
Eupithecia linariata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Eupithecia silenicolata zengoensis FAZEKAS, 1979
Eupithecia centaureata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Eupithecia subfuscata (HAWORTH, 1809)
 (=castigata HÜBNER, 1813)
Eupithecia succenturiata (LINNAEUS, 1758)
Eupithecia graphata (TREITSCHKE, 1828)
Eupithecia pimpinellata (HÜBNER, 1813)
Chloroclystis v-ata (HAWORTH, 1809)
Aplocera plagiata (LINNAEUS, 1758)
Aplocera efformata (GUENEE, 1857)
Aplocera praeformata (HOBNER, 1826)
Lithostege griseata
 ([DENIS & SCHIFFERMÜLLER], 1775)
Lithostege farinata (HUFNAGEL, 1767)
Minoa murinata (SCOPOLI, 1763)
NOTODONTIDAE
Clostera curtula (LINNAEUS, 1758)
Cerura vinula (LINNAEUS, 1758)
Dianura ulmi
 ([DENIS & SCHIFFERMÜLLER], 1775)
Notodonta dromedarius (LINNAEUS, 1758)
Notodontza zigac (LINNAEUS, 1758)
Drymonia rucicornis (HUFNAGEL, 1766)
 (=chaonia [DENIS & SCHIFFERMÜLLER], 1778)
Drymonia querna
 ([DENIS & SCHIFFERMÜLLER], 1775)
Drymonia velitaris (HUFNAGEL, 1766)
Pterostoma palpina (CLERCK, 1759)
Ptihorpha plumigera
 ([DENIS & SCHIFFERMÜLLER], 1775)
Gluphisia crenata (ESPER, 1785)
Phalera bucephala (LINNAEUS, 1758)
Phalera bucephaloides
 (OCHSENHEIMER, 1810)
Peridea aniceps (GOEZE, 1781)
Spatalia argentina
 ([DENIS & SCHIFFERMÜLLER], 1775)
NOCTUIDAE
Oxicesta geographica (FABRICIUS, 1787)
Acronicta tridens
 ([DENIS & SCHIFFERMÜLLER], 1775)
Acronicta psi (LINNAEUS, 1758)
Acronict rumicis (LINNAEUS, 1758)
Simyra nervosa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Cryphia erepricula (TREITSCHKE, 1825)
Cryphia domestica (HUFNAGEL, 1766)
Herminia griscalis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Polygons tentacularia (LINNAEUS, 1758)
Plpygon grizophalis
 (HERRICH-SCHAFFER, 1851)
Zanclognatha lunalis (SCOPOLI, 1763)
Catocola nupta (LINNAEUS, 1767)
Catocola fulminea (SCOPOLI, 1763)
Lygephila craccae
 ([DENIS & SCHIFFERMÜLLER], 1775)
Aedia funesta (ESPER, 1786)
Tyta lucutaosa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Euclidia glyphica (LINNAEUS, 1758)
Scoliopyrex libatrix (LINNAEUS, 1758)
Hypana proboscidalis (LINNAEUS, 1758)
Hypana rostralis (LINNAEUS, 1758)
Rivula sericealis (SCOPOLI, 1763)
Eutelia adulatrix (HUBNER, 1813)
Diachrysis chrysitis (LINNAEUS, 1758)
Diachrysis chryson (ESPER, 1789)
Macdonoughia confusa (STPHENSON, 1850)
Autographa gamma (LINNAEUS, 1758)
Abrostola tripertita (HUFNAGEL, 1766)
Abrostola asclepiads
 ([DENIS & SCHIFFERMÜLLER], 1775)
Emmalia trabealis (SCOPOLI, 1763)
Acontia lucida (HUFNAGEL, 1766)
Deltote bankiana (FABRICIUS, 1775)
 (=oliva Denis & SCHIFFERMÜLLER, 1775)
Pseudeustrotia candidula ([DENIS &
 SCHIFFERMÜLLER], 1775)
Odice arcaunna (HÜBNER, 1790)
Eublemma parva (HÜBNER, 1808)
Eublemma purpurina
 ([DENIS & SCHIFFERMÜLLER], 1775)
Cucullia absinthii (LINNAEUS, 1761)
Cucullia xeranthemi Boisduval, 1840
Cucullia chamomillae ([Denis & Schiffermüller], 1775)
Shargacucullia verbasci (Linnaeus, 1775)
Calophasia lunula (Hufnagel, 1766)
Calophsia platyptera (Esper, 1788)
Amphipyra berbera Rungs, 1949
Amphipyra livida ([Denis & Schiffermüller], 1775)
Amphipyra tragopoginis (Clerck, 1759)
Asteroscopus sphinx (Hufnagel, 1766)
Lamprosticta culta ([Denis & Schiffermüller], 1775)
Diloba caeruleocephala (Linnaeus, 1758)
Panemeria tenebrata (Scopoli, 1763)
Aegle kekeritziana Hübnner, 1799)
Heliothis viriplaca (Hufnagel, 1766)
Heliothis maritima Graslin, 1855
Heliothis peltigera ([Denis & Schiffermüller], 1775)
Pythia umbra (Hufnagel, 1766)
Periphanes delphinii (Linnaeus, 1758)
Paradrina selini (Boisduval, 1840)
Paradrina clavipalpis (Scopoli, 1763)
Hoplodrina octogonaria (Goeze, 1781)
(=alsines Brahmi, 1791)
Hoplodrina blanda ([Denis & Schiffermüller], 1775)
Hoplodrina respersa ([Denis & Schiffermüller], 1775)
Hoplodrina ambiguа ([Denis & Schiffermüller], 1775)
Athetis gluteosa (Treitschke, 1835)
Athetis furvula (Hübner, 1808)
Athetis pallustris (Hübner, 1808)
Proxenus lepigone (Möscher, 1860)
Drypterygia scabriuscula (Linnaeus, 1758)
Thalpophila matura (Hufnagel, 1766)
Phlogophora meticulosa (Linnaeus, 1758)
Actinotia polydon (Clerck, 1759)
Cloanthia hyperici ([Denis & Schiffermüller], 1775)
Ipimorpha subtusa ([Denis & Schiffermüller], 1775)
Parastichtis ypsilon ([Denis & Schiffermüller], 1775)
Dicycla oo (Linnaeus, 1758)
Cosmia diffinis (Linnaeus, 1767)
Atethmia centrago (Haworth, 1809)
Xanthia aurago ([Denis & Schiffermüller], 1775)
Xanthia sulphurago ([Denis & Schiffermüller], 1775)
Agrochola lychnidis ([Denis & Schiffermüller], 1775)
Agrochola tetola (Clerck, 1759)
Agrochola helvola (Linnaeus, 1758)
Eupsilia transversa (Hufnagel, 1766)
Conistra vaccinii (Linnaeus, 1761)
Conistra rubiginosa (Scopoli, 1763)
Conistra rubiginea ([Denis & Schiffermüller], 1775)
Conistra erythrocephala ([Denis & Schiffermüller], 1775)
Episema glaucina (Esper, 1789)
 Cleoecris scoriaea (Esper, 1789)
Brachylomia viminalis (Fabricius, 1776)
Xylena vetusta (Hübner, 1813)
Allophyes oxyacanthae (Linnaeus, 1758)
Valeria oleaginosa ([Denis & Schiffermüller], 1775)
Annonocia caemaculata ([Denis & Schiffermüller], 1775)
Polymixis polymita (Linnaeus, 1758)
Apamea monoglypha (Hufnagel, 1766)
Apamea subulustris (Esper, 1788)
Apamea scolopacina (Esper, 1788)
Oligia strigilis (Linnaeus, 1758)
Oligia versicolor (Borkhausen, 1792)
Oligia latruncula ([Denis & Schiffermüller], 1775)
Mesoligia furuncula ([Denis & Schiffermüller], 1775)
Mesapamea secalis (Linnaeus, 1758)
Photodes minima (Haworth, 1809)
Luperina testacea ([Denis & Schiffermüller], 1775)
Hydraecia micacea (Esper, 1789)
Gortyna flavago ([Denis & Schiffermüller], 1775)
Calamia tridens, (Hufnagel, 1766)
(=virens Linnaeus, 1767)
Archanara sparganii (Esper, 1790)
Chortodes extrema (Hübner, 1809)
Chortodes fluxa (Hübner, 1809)
Chortodes pygmina (Haworth, 1809)
Chortodes morrisii (Dale, 1837)
Discestra trifolii (Hufnagel, 1766)
Lacanobia w-latinum (HUFNAGEL, 1766)
Lacanobia oleracea (LINNAEUS, 1758)
Lacanobia thalassina (HUFNAGEL, 1766)
Lacanobia suasa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Hadena bicruris (HUFNAGEL, 1766)
Hadena compa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Hadena confusa (HUFNAGEL, 1766)
Hadena rivularis (FABRICIUS, 1775)
Hadena perplexa ([DENIS & SCHIFFERMÜLLER], 1775) (=lepida ESPER, 1790)
Hadena irregularis (HUFNAGEL, 1766)
Sideridis lampra (SCHAWERDA, 1913)
 (=evidens HÜBNER, 1808)
Heliophobus reticulata (GOEZE, 1781)
Conisania luteago
 ([DENIS & SCHIFFERMÜLLER], 1775)
Melanchra pisi (LINNAEUS, 1758)
Mamestra brassicae (LINNAEUS, 1758)
Polia bombycina (HUFNAGEL, 1766)
Mythimna turca (LINNAEUS, 1761)
Mythimna conigeria
 ([DENIS & SCHIFFERMÜLLER], 1775)
Mythimna ferrago (FABRICIUS, 1758)
Mythimna albipuncta
 ([DENIS & SCHIFFERMÜLLER], 1775)
Mythimna pudorina
 ([DENIS & SCHIFFERMÜLLER], 1775)
Mythimna impura (HÜBNER, 1808)
Mythimna pallens (LINNAEUS, 1758)
Mythimna l-album (LINNAEUS, 1767)
Orthosia incerta (HUFNAGEL, 1766)
Orthosia gothica (LINNAEUS, 1758)
Orthosia cruda
 ([DENIS & SCHIFFERMÜLLER], 1775)
Orthosia miniosa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Orthosia opima (HÜBNER, 1809)
Orthosia cerasi (FABRICIUS, 1775)
Orthosia gracilis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Orthosia munda
 ([DENIS & SCHIFFERMÜLLER], 1775)
Egira conspicillaris (LINNAEUS, 1758)
Perigrapha i-cinctum
 ([DENIS & SCHIFFERMÜLLER], 1758)
Hyssa cavernosa (EVERSMANN, 1842)
Cerapteryx graminis (LINNAEUS, 1758)
Tholera cespitis
 ([DENIS & SCHIFFERMÜLLER], 1775)
Tholera decemalis (PODA, 1761)
Pachetra sagittigera (HUFNAGEL, 1766)
Eriopygodes imbecilla (FABRICIUS, 1794)
Axylia putris (LINNAEUS, 1761)
Ochropleura plecta (LINNAEUS, 1761)
Noctua pronuba LINNAEUS, 1758
Noctua orbona (HUFNAGEL, 1766)
Noctua interposita (HÜBNER, 1813)
Noctua fimbriata (SCHREBER, 1759)
Chersotis fimbriola (ESPER, 1803)
Spaelotis ravida
 ([DENIS & SCHIFFERMÜLLER], 1775)
Opigena polygona
 ([DENIS & SCHIFFERMÜLLER], 1775)
Eugnorisma depuncta (LINNAEUS, 1761)
Xestia c-nigrum (LINNAEUS, 1758)
Xestia ditrapezium
 ([DENIS & SCHIFFERMÜLLER], 1775)
Xestia baja
 ([DENIS & SCHIFFERMÜLLER], 1775)
Xestia xanthographa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Cerastis rubricosa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Euxoa aequilina
 ([DENIS & SCHIFFERMÜLLER], 1775)
Euxoa distinguida (LEDERER, 1857)
Euxoa nigricans (LINNAEUS, 1761)
Euxoa obelisca
 ([DENIS & SCHIFFERMÜLLER], 1775)
Euxoa vitta (ESPER, 1879)
Dichagyris candelisequa
 ([DENIS & SCHIFFERMÜLLER], 1775)
Yigoga nigrescens (HOFNER, 1888)
Yigoga forcipula
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agrotis crassa (HÜBNER, 1803)
Agrotis exclamationis (LINNAEUS, 1758)
Agrotis segetum
 ([DENIS & SCHIFFERMÜLLER], 1775)
Agrotis cinerea
 ([DENIS & SCHIFFERMÜLLER], 1775)
Colocasia coryli (LINNAEUS, 1758)
LYMANTRIIDAE
Lymantria dispar (LINNAEUS, 1758)
Ocneria rubea
 ([DENIS & SCHIFFERMÜLLER], 1775)
Dicallomera fascelina (LINNAEUS, 1758)
Euproctis similis (FUESLTY, 1775)
Pentophera morio (LINNAEUS, 1767)
NOLIDAE
Meganola albula
([DENIS & SCHIFFERMÜLLER], 1775)
Nola chlamitulalis (HUBNER, 1793)
ARCTIIDAE
Coscinia cribaria (LINNAEUS, 1758)
Miltochrista miniata (FORSTER, 1771)
Cybosia mesomella (LINNAEUS, 1758)
Pelosa muscera (HUFNAGEL, 1766)
Eilema complana (LINNAEUS, 1758)
Eilema caniola (HUBNER, 1808)
Eilema palliatella (SCOPOLI, 1763)
Eilema pygmeola (DOUBLEDAY, 1847)
Eilema lutarella (LINNAEUS, 1758)
Lithosia quadra (ESPER, 1787)
Setina roscida
([DENIS & SCHIFFERMÜLLER], 1775)
Amata phagea (LINNAEUS, 1758)
Dysauxes ancilla (LINNAEUS, 1767)
Ocagnyna parasita (HUBNER, 1790)
Chelis maculosa (GERNING, 1780)
Watsonarctia casta (ESPER, 1785)
Phragmatobia fuliginosa (LINNAEUS, 1758)
Spilosoma lutea (HUFNAGEL, 1766)
Spilosoma lubricpeda (LINNAEUS, 1758)
Diaphora mendica (CLERCK, 1759)
Rhyaria purpurata (LINNAEUS, 1758)
Arctica caja (LINNAEUS, 1758)
Arctica villica (LINNAEUS, 1758)
Arctica festiva (HUFNAGEL, 1766)
Euplagia quadripunctaria (PODA, 1761)

Ertekelés

Öskű környékén a meglehetősen száraz, nagy hőmérsékleti ingadozású, déli kitettségű, erős besugárzású lejtőket nyílt dolomitsziklagnyomások (Seveli leucospermi-Festucetum pallentis) uralkodják, amelyek a degradációnak viszonylag jól ellenállnak. Az erős taposás (katonai gyakorlatok) jellegtelenítő hatása miatt az eredeti faunakép ma már csak részben rekonstruálható, ugyanakkor rendkívül időszerű. A fajspektrum felvázolásával először nyilik alkalom a Bakony és más középhegységi területek hasonló öléletről függően összehasonlítására.

A vizsgálatok során ez idáig 737 faj került, amelyből 262 faj Microlepidoptera, és 475 faj Macrolepidoptera. Ez a taxonómiai diverzitás jóval alacsonyabb, mint a turizmus által erősödött üdülőhelyekben ismeretlen fajok számára. A vadnyelvészetben és földrajzilag nagyon ritka és rendszerint helyenként nagyon ritka taxonok is megfigyelhetőek, például a Bakonyban az Arctia festiva (vö. FEGYER 1828: 943 faj).

Az öskű döntő területeken több olyan faj is meglévő, amelyet eddig a Bakony más területeiről még nem sikerült igazolni: pl. Coleophora colutella (FABRICIUS, 1794), Hylaeidea lutealis (HUBNER, 1809), Zygaena fausta agilis RIEB, 1932, Eugnostoa laithonia (HUBNER, 1800), Thiodia trochilana (FROHLICH, 1828), Eucosma tundrana (KENNEL, 1900), Pyralis perversalis (HERRICH-SCHAFFER, 1849), Pediasia kenderesiensis FAZEKAS, 1987, Nychodes obscuraria (WILLERS, 1879) stb.

Igen magas a védett fajok száma (31 spp.), közöttük több európai jelentőségű, igen ritka és lokális taxonnal (pl. Zygaena fausta agilis RIEB, 1932, Pieris ergane (GEYER, 1828), Chersotis fimbirola (ESPER, 1803), Dysicia conspersaria ([DENIS & SCHIFFERMÜLLER], 1775), Arctica festiva (HUFNAGEL, 1766) stb.).
Védett fajok:

Zygaena fausta agilis Reis, 1932
Saturnia pyri ([DENIS & SCHIFFERMÜLLER], 1775)
Saturnia spini ([DENIS & SCHIFFERMÜLLER], 1775)
Lemonia dum (LINNAEUS, 1761)
Lemonia taraxaci ([DENIS & SCHIFFERMÜLLER], 1775)
Acherontia atropos (LINNAEUS, 1758)
Iphiclides podalirius (LINNAEUS, 1758)
Papilio machaon LINNAEUS, 1758
Leptidea morssei (FENTON, 1881)
Pieris ergane (GEYER, 1828)
Colias chrysotheme (ESPER, 1781)
Lycaena thersamon (ESPER, 1784)
Lycaena dispar (HAWORTH, 1802)
Maculinea arion (LINNAEUS, 1758)
M. teleius (BERGSTRASSER, 1779)
M. nausithous (BERGSTRASSER, 1779)
Vanessa atalanta (LINNAEUS, 1758)
Inachis io (LINNAEUS, 1758)
Euphydryas maturna (LINNAEUS, 1758)
E. aurinia (ROTTEMBURG, 1775)
Chersotis fimbriola (ESPER, 1803)
Cucullia xaranthemi BOISDUVAL, 1840
Chazara briseis (LINNAEUS, 1764)
Odontognophos dumetata (TREITSCHKE, 1827)
Charissa intermedia (WEHRLI, 1917)
Eupithecia graphata (TREITSCHKE, 1828)
Dyscia conspersaria ([DENIS & SCHIFFERMÜLLER], 1775)
Phalera bucephaloides (OCHSENHEIMER, 1810)
Ocnogyna parasita (HÜBNER, 1790)
Arctica festiva (HUFNAGEL, 1766)
Coscinia cribraria (LINNAEUS, 1758)
Euxoa vitta (ESPER, 1789)

Jellegzetes, védett, veszélyeztetett és ritka fajok:

Eucosma tundrana (KENNEL, 1900) (Tortricidae): Kazahsztán üröm pusztáitól a közép-európai sztyeprétekig és sziklagyepékig lokálisan elterjedt, a Pannon-Kárpát-térségben lokális, helyenként ritka faj. A Bakonyból ez idáig csak Öskülről került elő.

Agriphila tolli pelsonius FAZEKAS, 1985 (Crambidae): Az A. tolli három markáns, földrajzilag és ökológiai elkülönülésében feltehetően az atlantomediterrán Agriphila geniculea perempopulációival (Somogy megye, Bakony). A ssp. pelsonius izoklimatikus areáképet mutat, mivel csak a cseres tölgyes klímavonban elterjedt, és az összefüggő földrajzi tagozatosság miatt a 23 évben újabb bizonyítópéldány nem került elő. Hazai kipusztulása valószínűsíthető.

Dyscia conspersaria ([DENIS & SCHIFFERMÜLLER], 1775) (Geometridae): A faj rokonságú köre a Palearktikumban taxonómiaiak csak részben feltárt, a chorológiai adatok további vizsgálatokat igényelnek. A pannon populációk a nevezéktani alfajt képviselik. A conspersaria magyarországi habitatjai középhegységi mészkő és dolomitos területek vegetáció-mozáikjaiban (szilágylevek, sztyeplejtők, karsztbokoredők) csak lokálisan jelennek meg. Az imágók május elejétől június végéig éjszaka repülnek, nappal a sziklatömbök, sziklakulpidák általánosan pihennek.

gyűjtési adatok egyértelműen nem igazolták. Az ösküi vasúti töltés menti nedves réten a *Maculinea nausithous* kb. ötször gyakoribb volt, mint a *teleius*.

Pótlanok

A kézirat lezárását követően – Szeőke Kálmán kutatásai nyomán – több új ösküi faj is előkerült. A *Phyllometra culminaria*-t László M. Gyula gyűjtötte. Adataikat e helyen is megkösönöm. A fajnevek ábécé sorrendben a következők:

- *Actinotia radiosa* (ESPER, 1804)
- *Argynnis niobe* (LINNAEUS, 1758)
- *Argynnis pandora* ([DENIS & SCHIFFERMÜLLER], 1775)
- *Brachodes pumilla* (OCHSENHEIMER, 1808)
- *Callistege mi* (CLERCK, 1759)
- *Eucilia glyphica* (LINNAEUS, 1758)
- *Phyllometra culminaria* (EVERSMANN, 1834)
- *Satyrum w-album* (KNOCH, 1782)
- *Satyrum ilicis* (ESPER, 1779)
- *Satyrum acaciae* (FABRICIUS, 1787)
- *Spialia sertorius* (HOFFMANNSEGG, 1804)
- *Zygaena brizae* (ESPER, 1800)
- *Zygaena ephialtes* (LINNAEUS, 1767)
- *Zygaena punctum* (OCHSENHEIMER, 1808)
- *Zygaena viciae* ([DENIS & SCHIFFERMÜLLER], 1775)

(Megjegyzés: A fenti taxonokkal az általam gyűjtött ösküi fajok száma 752-re emelkedett.)
2. ábra: *Saturnia spinia* (a), *Lemonia dumia* (b)
Fig. 2. *Saturnia spinia* (a), *Lemonia dumia* (b)

3. ábra: *Pieris ergane* (a) *Colias chrysotheme* (b)
Fig. 3. *Pieris ergane* (a) *Colias chrysotheme* (b)

4. ábra: *Euphydryas aurinia* (a), *Chazara briseis* (b)
Fig. 4. *Euphydryas aurinia* (a), *Chazara briseis* (b)
5. ábra: Odontognophos dumetata (a), Charissa intermedia (b)
Fig. 5. Odontognophos dumetata (a), Charissa intermedia (b)

6. ábra: Dyscia conspersaria (a), Coscinia cribraria (b)
Fig. 6. Dyscia conspersaria (a), Coscinia cribraria (b)

8. ábra: Ocnogyna parasita (a), Arctica festiva (b)
Fig. 8. Ocnogyna parasita (a), Arctica festiva (b)
7. ábra: A Nychiodes obscuraria és a N. dalmatiana földrajzi elterjedése (a), a N. obscuraria habitusképe (b) és hím genitália (c)

Fig. 7. Distribution map of the Nychiodes obscuraria and N. dalmatiana (a). N. obscuraria (b) and male genitalia, ventro-caudal aspect, valvae spread; aedeagus separated (c)
 Köszönetnyilvánítás

Köszönetemet nyilvánítom bírólómnak, Szeőke Kálmánnak, akinek alapos lektorit véleménye hozzájárult a kézírat hibáinak kijavításához. Köszönöm, hogy a fajlistát további taxonokkal kigészítette. Az a néhány részlet, amiben véleményünk eltér egymástól, az elsősorban a szakirodalomban található ellentmondásokon illetve a helyi kutatások eredményeinek eltérő értékelésére vezethető vissza.

Hálás köszönettel tartozom Tóth Sándornak, a zirci múzeum nyugalmazott igazgatójának, aki gyűjtéseimet hosszú éveken át támogatta. Köszönöm Ábrahám Levente (Kaposvár) kollégámnak, hogy kéziratom első változatát hasznos információkkal látta el.

Irodalom

A szerző címe (Author’s address):

FAZEKAS Imre
Regiografo és Szakértő Központ
Regiografo & Expert Center
H–7300 Komló
Majális tér 17/A
E-mail: fazekas.i@hu.inter.net
CONTRIBUTION TO THE AQUATIC INSECT FAUNA OF THE NORTHERN PART OF THE BAKONY MOUNTAINS (EPHEMEROPTERA, COLEOPTERA, HETEROPTERA AND TRICHOPTERA)

ZOLTÁN CSABA1* – ARNOLD MÓRA2 – PÁL BODA3 – BALÁZS CSER1 – KRISTÓF MÁLNÁS3

Abstract: Contribution to the aquatic insect fauna of the north part of Bakony Mountains (Ephemeroptera, Coleoptera, Heteroptera, Trichoptera) – Collecting data of 175 taxa (13 species of mayfly larvae, 104 taxa of aquatic beetles, 27 taxa of aquatic and semiaquatic bugs and 31 species of caddisfly larvae) are given from 51 localities in the north part of Bakony Mountains, NW Hungary. 64 species are reported for the first time from Bakony. The occurrence of Siphlonurus armatus, Baetis pentaphlebodes, Electrogena ujhelyii, Paraleptophlebia werneri, Hydroporus discretus discretus, H. discretus ponticus, H. memnonius, H. tristis, Agabus striolatus, Helophorus discrepans, H. dorsalis, Laccobius simulatrix, L. sinuatus, Berosus fulvus, Pomatinus substriatus, 8 species of the less known Elmidae family, Aquarius najas, Mesovelia thermalis, Rhyacophila oblirata and Potamophilax cingulatus are important faunistic results.

Introduction

The first faunistical data on mayflies of the Bakony Mountains are more than 100 years old. However the investigation were getting on slowly, only 7 species became known to 1939 (see TÓTH 1992b). From the 1950s ÚJHELYI investigated the mayflies of Hungary, thanks to his work the number of species are known from this region has reached 22 (ÚJHELYI 1966, 1979). A summary of the mayfly fauna of the Bakony Mountains was given by TÓTH (1992b), reported 29 species. Since this paper there are no new data. The fact that SOWA (1981) described a species from the brooks of the Bakony Mountains and that we found some rare species here indicates the importance of the region.

2Balaton Limnological Research Institute of the HAS, Tihany H–8237, Klebersberg Kuno u. 3.
3University of Debrecen, Department of Hydrobiology, Debrecen H-4032 Egyetem tér 1.
*corresponding author, e-mail: csabai@ttk.pte.hu
Aquatic beetle fauna of Bakony Mountains are only known from some sporadic collecting data, like many other regions of Hungary. Majority of these data are unpublished yet. In the last several years the revision of aquatic beetle collection of the Bakony Natural History Museum (Zirc) and Hungarian Natural History Museum (Budapest) has finished, the publication of the results of review is in progress (CSABAI et al. 2005). Regarding Bakony Mountains, the majority of the papers furnished data from Lake Balaton and its environs. SZEKESSY (1943) summarized data from the Tihany Peninsula, TÓTH (1968) published data from Balaton Uplands, TÓTH (1991) and MERKL (1996) gave all known data from Lake Balaton, WACHSMANN (1907) provided informations on the beetle fauna of Pápa and its surroundings. Altogether 98 species were known from this area. All these data came from collecting and trapping made in edge territories of Bakony, but inside the mountains there was no comprehensive survey concerning aquatic beetles.

The aquatic and semiaquatic heteroptera fauna of Bakony is still almost completely unknown. There are extensive surveys on the terrestrial Heteroptera fauna of Bakony carried out by the staff of the Bakony Natural History Museum, but these works provided only a few occurrence data of aquatic and semiaquatic taxa, chiefly regarding large sized, easily identifiable species (HARMAT 2001).

The caddisfly fauna of the Bakony Mountains is well known. The first reports were published by ÚJHELYI (1979). Some data are known from the revision of the collection of the Hungarian Natural History Museum (NÓGRÁDI 1989). In the 1980s the first extensive investigations on the caddisfly fauna of the Bakony Mountains were carried out and 87 species were recorded from 52 sites (NÓGRÁDI and UHERKOVICH 1985). Further data are given from other sites in the area of Bakony by the same authors (UHERKOVICH and NÓGRÁDI 1988). Sporadic data can be found in the work on the caddisfly fauna of the Lake Balaton and its catchment area (NÓGRÁDI and UHERKOVICH 1994). Based on these results 100 caddisfly species are recorded from the Bakony Mountains, so the caddisfly fauna of this area is one of the best known in Hungary.

Materials and methods

In 2003 and 2004 we made faunistical survey in 51 sampling sites of north part of Bakony Mountains. The date of sampling considering the fenology of aquatic insects were in spring (25–27 April 2003, 12–13 and 25 May 2004), in summer (16–18 August 2003) and in early autumn (23–24 September 2004).

In the course of appointing the collecting localities we intended to represent all main types of waterbodies of Bakony Mountains, like streams, pools, marshes, lakes and reservoirs.

Below in the list a total of 51 sampling sites are given with their name, in brackets with their administrative units, the accurate geographical co-ordinates and the 10×10 km UTM-grid codes (Table 1, Figure 1).
Table 1: Sampling sites in the northern part of the Bakony Mountains with exact geographical co-ordinates and 10×10 km UTM grid codes

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>N</th>
<th>E</th>
<th>UTM codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aranyos-patak (Bakonyzsíncsor)</td>
<td>47°21'30"</td>
<td>17°53'45"</td>
<td>YN 14</td>
</tr>
<tr>
<td>Aranyos-patak (Csesznek)</td>
<td>47°21'08"</td>
<td>17°52'22"</td>
<td>YN 14</td>
</tr>
<tr>
<td>Aranyos-patak, built-up area (Csesznek)</td>
<td>47°21'22"</td>
<td>17°53'10"</td>
<td>YN 14</td>
</tr>
<tr>
<td>Bakonyzsíncsor-vízfla (Bakonyzsíncsor)</td>
<td>47°16'54"</td>
<td>17°58'04"</td>
<td>YN 24</td>
</tr>
<tr>
<td>Borostyán-kút (Bakonybél)</td>
<td>47°14'39"</td>
<td>17°44'05"</td>
<td>YN 03</td>
</tr>
<tr>
<td>Cuha (Vinye)</td>
<td>47°21'33"</td>
<td>17°49'37"</td>
<td>YN 14</td>
</tr>
<tr>
<td>Cuha (Zirc)</td>
<td>47°15'58"</td>
<td>17°52'34"</td>
<td>YN 13</td>
</tr>
<tr>
<td>Cuha, Lukács-rei (Zirc)</td>
<td>47°14'55"</td>
<td>17°53'29"</td>
<td>YN 13</td>
</tr>
<tr>
<td>Cuhai-Bakony-ér (Bakonyzsíncsor)</td>
<td>47°22'56"</td>
<td>17°51'02"</td>
<td>YN 15</td>
</tr>
<tr>
<td>Cuhai-Bakony-ér (Réde)</td>
<td>47°25'30"</td>
<td>17°54'23"</td>
<td>YN 15</td>
</tr>
<tr>
<td>Csurgo-víztároló (Fehérvár-surgó)</td>
<td>47°17'30"</td>
<td>18°14'45"</td>
<td>BT 94</td>
</tr>
<tr>
<td>Dudari-patak (Bakonyzsíncsor)</td>
<td>47°22'13"</td>
<td>17°52'33"</td>
<td>YN 15</td>
</tr>
<tr>
<td>Fekete-ér, Kardosréti (Zirc)</td>
<td>47°17'31"</td>
<td>17°52'41"</td>
<td>YN 14</td>
</tr>
<tr>
<td>Fekete-víz-ér-mocsár (Acéteszér)</td>
<td>47°25'21"</td>
<td>17°59'31"</td>
<td>YN 25</td>
</tr>
<tr>
<td>Feketevíz-ér-tavak (Acéteszér)</td>
<td>47°25'54"</td>
<td>17°59'43"</td>
<td>YN 25</td>
</tr>
<tr>
<td>Gaja (Bakonyzsíncsor)</td>
<td>47°16'02"</td>
<td>17°58'14"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Gaja (Bálnika)</td>
<td>47°18'55"</td>
<td>18°12'32"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Gaja (Jásd)</td>
<td>47°17'03"</td>
<td>18°02'25"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Gaja (Mecsér)</td>
<td>47°19'09"</td>
<td>18°09'30"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Gaja (Szápár)</td>
<td>47°17'41"</td>
<td>18°03'18"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Gaja, E (Bakonycsom)</td>
<td>47°19'17"</td>
<td>18°07'01"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Gaja, W (Bakonycsom)</td>
<td>47°18'54"</td>
<td>18°05'30"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Gaja, Vaj鲜艳 (Bálnika)</td>
<td>47°18'52"</td>
<td>18°12'49"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Gerence, Akli (Zirc)</td>
<td>47°13'33"</td>
<td>17°49'49"</td>
<td>YN 13</td>
</tr>
<tr>
<td>Gerence, Gerencepuszta (Bakonybél)</td>
<td>47°17'01"</td>
<td>17°42'42"</td>
<td>YN 04</td>
</tr>
<tr>
<td>Gerence, Öreg-Szavard-áték (Bakonybél)</td>
<td>47°17'09"</td>
<td>17°42'32"</td>
<td>YN 04</td>
</tr>
<tr>
<td>Hajagos-völgyi-patak (Szápár)</td>
<td>47°17'46"</td>
<td>18°03'19"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Hajmás-patak (Csákta)</td>
<td>47°21'40"</td>
<td>17°57'39"</td>
<td>YN 24</td>
</tr>
<tr>
<td>Hajmás-patak (Réde)</td>
<td>47°23'43"</td>
<td>17°53'22"</td>
<td>YN 15</td>
</tr>
<tr>
<td>Hajmás-tározó (Réde)</td>
<td>47°22'59"</td>
<td>17°55'21"</td>
<td>YN 25</td>
</tr>
<tr>
<td>Kéthükkövi-ér (Csákta)</td>
<td>47°22'21"</td>
<td>17°58'34"</td>
<td>YN 25</td>
</tr>
<tr>
<td>Malmi-patak (Csetény)</td>
<td>47°18'38"</td>
<td>18°00'10"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Malom-völgyi-patak (Eplény)</td>
<td>47°12'54"</td>
<td>17°55'47"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Malom-völgyi-patak (Olaszfalu)</td>
<td>47°14'26"</td>
<td>17°55'27"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Malom-völgyi-patak, upper west arm (Olaszfalu)</td>
<td>47°14'36"</td>
<td>17°55'45"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Mocsár, Malom-völgyi-patak, upper west arm (Olaszfalu)</td>
<td>47°14'36"</td>
<td>17°55'52"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Patak, Kisgyónbanya (Bakonycsom)</td>
<td>47°18'13"</td>
<td>18°07'11"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Patak, Luszi-dülő (Bálnika)</td>
<td>47°19'05"</td>
<td>18°10'00"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Patak, Timáruszta (Mó)</td>
<td>47°21'44"</td>
<td>18°10'00"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Perei-ér (Olaszfalu)</td>
<td>47°14'58"</td>
<td>17°56'36"</td>
<td>YN 23</td>
</tr>
<tr>
<td>Súri-patak (Bakonycsom)</td>
<td>47°19'20"</td>
<td>18°04'20"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Súri-patak (Sur)</td>
<td>47°22'01"</td>
<td>18°01'30"</td>
<td>BT 75</td>
</tr>
<tr>
<td>Súri-patak, Pap-hegy (Bakonycsom)</td>
<td>47°19'00"</td>
<td>18°05'18"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Szapári-ér (Szápár)</td>
<td>47°18'57"</td>
<td>18°02'36"</td>
<td>BT 74</td>
</tr>
<tr>
<td>Szarvas-kút (Zirc)</td>
<td>47°13'57"</td>
<td>17°51'05"</td>
<td>YN 13</td>
</tr>
<tr>
<td>Szarvas-kút, outlet (Zirc)</td>
<td>47°13'53"</td>
<td>17°51'02"</td>
<td>YN 13</td>
</tr>
<tr>
<td>Szőmörke-patak, in front of village (Bakonybél)</td>
<td>47°14'49"</td>
<td>17°43'55"</td>
<td>YN 03</td>
</tr>
<tr>
<td>Szőmörke-patak, Hudi-földék (Bakonybél)</td>
<td>47°14'23"</td>
<td>17°44'01"</td>
<td>YN 03</td>
</tr>
<tr>
<td>Velégi-vízfolyás (Bálnika)</td>
<td>47°19'28"</td>
<td>18°10'18"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Velégi-vízfolyás, east arm (Nagyveleg)</td>
<td>47°21'29"</td>
<td>18°06'32"</td>
<td>BT 84</td>
</tr>
<tr>
<td>Velégi-vízfolyás, west arm (Nagyveleg)</td>
<td>47°21'19"</td>
<td>18°08'15"</td>
<td>BT 84</td>
</tr>
</tbody>
</table>
During the collecting period the aquatic insects were captured by sweeping with a long handled pond net just above the substrate, on water surface, and among the submerged or emergent vegetation (MSZ 1998). In flowing waters aquatic insects were captured by "kick and sweep" technique. Beyond netting some beetles, bugs, mayflies and caddisflies were captured by manual singling from surface of submerged stones, woodstocks, etc. On specimens which were identifiable on field, we took observational data into consideration. The majority of the captured specimens – which were not identifiable on field – were preserved in 70% ethyl-alcohol.

Helophorus aquaticus / H. aequalis and H. minutus / H. paraminutus species are common, more often coexistent in Hungary. The accurate separation of the species from each other is feasible only by chromosomal analysis. There was beyond our means to execute this analysis, therefore these nearly related species are treated uniformly, like pair-species. Accurate identification of Elmis, Limnius and Riolus species are possible only by examination of male genitalia, therefore in the list below occurrence data of male specimens of this species are listed.

Some voucher specimens of collected species are deposited in the collection of Bakony Natural History Museum (Zirc), further specimens are deposited in authors' collections.

Figure 1. Sampling sites in the north part of the Bakony Mountains.
Results

Our samplings at 51 sites resulted in occurrence of 3168 individuals of aquatic insects (689 Ephemeroptera, 1203 Coleoptera, 579 Heteroptera, 697 Trichoptera) belonging to 175 taxa (13 Ephemeroptera, 104 Coleoptera, 27 Heteroptera, 31 Trichoptera). 64 species were reported for the first time from Bakony mountains (in the list below, these species are marked with asterisk*). Our paper give 1006 new faunistic data from this area (109 Ephemeroptera, 485 Coleoptera, 212 Heteroptera, 200 Trichoptera).

The breakdown of the number of species found by the aquatic insect families are summarized in Table 2, with the number of species known from the Bakony Mountains and from Hungary.

<table>
<thead>
<tr>
<th>Aquatic Insect Families</th>
<th>Bakony 2003-2004 (new species)</th>
<th>Bakony published</th>
<th>Bakony total</th>
<th>Hungary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeroptera</td>
<td>13</td>
<td>29</td>
<td>30</td>
<td>91</td>
</tr>
<tr>
<td>Siphlonuridae</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ameletidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ametropodidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Baetidae</td>
<td>5(1)</td>
<td>6</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>Oligoneuriidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Isorhychidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Heptagenidae</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Leptophlebiidae</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Ephermeridae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Palingeniidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Polybutryciidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Polamuridae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ephemerellidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Neonopthermeridae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Caenidae</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Prospommatopidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>104</td>
<td>98</td>
<td>132</td>
<td>267</td>
</tr>
<tr>
<td>Halipidae</td>
<td>10(3)</td>
<td>9</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Dytsicidae</td>
<td>43(11)</td>
<td>44</td>
<td>55</td>
<td>109</td>
</tr>
<tr>
<td>Noteridae</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gyrididae</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Spercheidae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydrochidae</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Helophoridae</td>
<td>11(6)</td>
<td>7</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Hydrophilidae</td>
<td>26(6)</td>
<td>26</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td>Dryopidae</td>
<td>1(1)</td>
<td>-</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Elmidae</td>
<td>8(8)</td>
<td>-</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquatic Insect Families</th>
<th>Bakony 2003-2004 (new species)</th>
<th>Bakony published</th>
<th>Bakony total</th>
<th>Hungary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heteroptera</td>
<td>27</td>
<td>4</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>Nepidae</td>
<td>2(1)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Corixidae</td>
<td>7(7)</td>
<td>-</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Notocoracida</td>
<td>1(1)</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Notonectidae</td>
<td>2(1)</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pleidae</td>
<td>1(1)</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aphelocheirida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Hydromeridae</td>
<td>2(2)</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hebridae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Velidae</td>
<td>3(3)</td>
<td>-</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Mesoveliidae</td>
<td>2(2)</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gerridae</td>
<td>7(5)</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Phryganeidae</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Ectromelia</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phryganeidae</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Brachycentridae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Apatarididae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Limnephilidae</td>
<td>19(3)</td>
<td>32</td>
<td>35</td>
<td>57</td>
</tr>
<tr>
<td>Goeridae</td>
<td>2(1)</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Lepidotomatidae</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Leptoceridae</td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>Sericostomatidae</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Beraeidae</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Helicopsychida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Odonotocerida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Overview of the numbers of species of aquatic insect families found in the Bakony Mountains in 2003–2004, published from the Bakony up to 2003, total number of species known from the Bakony and Hungary.
The 13 mayfly species found represent 14% of the Hungarian fauna and 43.3% of the fauna known from the Bakony. *Siphlonurus armatus* (28 sites), *Electrogena ujhelyii* (17 sites) were the most common species. *Baetis pentaphlebodes* is new to the fauna of Bakony Mountains.

The 97 aquatic beetle species found represent 39% of the Hungarian fauna and 78.8% of the fauna known from the Bakony. The most common species of aquatic beetles were *Anacaena limbata* (30 sites), *Platambus maculatus* (22 sites), *Hydrobius fuscipes* (16 sites). Because of the lack of comprehensive survey on aquatic beetles in the northern part of the Bakony, all of the species found are new to the fauna of this area, 35 species are new to the fauna of the whole Bakony Mountains and its environs (including edge territories and Lake Balaton, in the list below these species marked with asterisk). Based on earlier papers and our recent data a total of 132 aquatic beetle species are known recently from the Bakony Mountains and its environs.

The 26 aquatic and semi-aquatic bug species found represent 47.6% of the Hungarian fauna. *Nepa cinerea* (17 sites), *Gerris lacustris* (18 sites), and *Aquarius paludum* (21 sites) were the most common species. Thus far only *Nepa cinerea, Notonecta viridis, Aquarius paludum* and *Gerris thoracicus* were recorded from the Bakony Mountains and its environs, so the other 23 species are new to the fauna of this area (marked with asterisk in the list below).

The found 31 caddisfly species are 14% of the Hungarian fauna and 31% of the fauna known from the Bakony. Five species proved to be new to the caddisfly fauna of this area: *Rhyacophila obliterata, Halesus digitatus, Micropterna nycterobia, Potamophylax cingulatus, Lithax obscurus*. The *Ironoquia dubia* (20 sites), *Limnephilus rhombicus, Potamophylax rotundipennis, Chaetopteryx fusca* (17–17 sites) and *Limnephilus lunatus* (14 sites) were the most common species.

Our results suggest that Aranyos-patak (Csesznek), Borostyán-kút (Bakonybél), Cuhai-Bakony-ér (Réde), Dudari-patak (Bakonyszentkirály), Feketevíz-éri-tavak (Acsteszér), Fekete-ér, Kardosrét (Zirc), Gaja (Bakonyvencsénye, Szápár) and Gerence, Gerencepuszta (Bakonybél) are the most valuable waterbodies in the northern part of the Bakony mountains.

In the list of the species we gave the locality (with administration unit), the date of sampling, the total number of individuals and the names of collectors in alphabetic order. The names of collectors are given by abbreviations as follows: BP – Pál Boda, CsB – Balázs Cser, CsZ – Zoltán Csabai, MA – Arnold Móra, PZs – Zsuzsanna Pap.

List of species

EPHEMEROPTERA

SIPHLONURIDAE

BAETIDAE

Baetis pentaphlebodes ÚJHELYI, 1966* - Gaja (Balinka): 2004. 05. 25., 1, CsB-CsZ – Gerence, Akli (Zirc): 2004. 05. 12., 2, CsB-CsZ

HEPTAGENIIDAE

LEPTOPHLEBIIDAE

Paraleptophlebia submarginata (Stephens, 1835) – Gaja (Szápár): 2003. 04. 27., 1, BP–CsZ–MA.

Paraleptophlebia werneri Ulmer, 1919 – Velegi-vízfolyás (Balinka): 2004. 05. 13., 1, CsB–CsZ – Velegi-vízfolyás, east arm (Nagyveleg): 2004. 05. 13., 1, CsB–CsZ.

CAENIDAE

COLEOPTERA

HALIPLIDAE

Haliplus fulvus (Fabricius, 1801)* – Borostyán-kút (Bakonybél): 2003. 04. 26., 1, BP–CsZ–MA.

Haliplus immaculatus Gerhardt, 1877 – Borostyán-kút (Bakonybél): 2003. 08. 17., 1, BP–CsZ–MA.

Haliplus obliquus (Fabricius, 1787)* – Borostyán-kút (Bakonybél): 2003. 08. 17., 4, BP–CsZ–MA.

Haliplus ruficollis (de Geer, 1774) – Borostyán-kút (Bakonybél): 2003. 08. 17., 1, BP–CsZ–MA.

Haliplus variegatus Sturm, 1834* – Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 1, CsB–CsZ.

Dytiscidae

Copelatus haemorrhoidalis (Fabricius, 1787) – Perei-ér (Olaszfalu): 2003. 04. 25., 1, BP–CsZ–MA.

Hydroporus discretus discretus Fairmaire et Brisout, 1859* – Malom-völgyi-patak (Olaszfalu): 2003. 04. 26., 1, BP–CsZ–MA.

Hydroporus fuscipennis Schaum, 1868 – Patak, Luszti-dűlő (Balinka): 2004. 05. 25., 1, CsB–CsZ.

Hydroporus planus (FABRICIUS, 1781) – Cuha (Vinye): 2004. 05. 25., 2, CsB-CsZ – Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 4, CsB-CsZ – Mocsár, Malom-völgyi-patak, upper west arm (Olaszfalau): 2004. 05. 25., 2, CsB-CsZ – Patak, Lushti-dűlő (Balinka): 2004. 05. 25., 11, CsB-CsZ.

Hydroporus tristis (PAYKULL, 1798)* – Patak, Timárpuszta (Mór): 2004. 05. 13., 1, CsB-CsZ.

Porthyrus lineatus (FABRICIUS, 1775) – Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 1, CsB-CsZ.

Hygrotus decoratus (GYLLENHAL, 1808) – Hajmás-tározó (Réde): 2003. 04. 25., 1, BP-CsZ-MA.

Agabus striolatus (Gyllenhal, 1808)* – Súri-patak (Súr): 2003. 04. 25., 3, BP–CsZ–MA.

Agabus uliginosus (Linnaeus, 1761) – Malmi-patak, Malom-völgyi-patak, upper west arm (Olaszfalu): 2004. 05. 25., 2, CsB–CsZ.

Ilybius ater (de Geer, 1774) – Hajmás-tározó (Réde): 2003. 08. 17., 1, BP–CsZ–MA.

Ilybius fenestratus (Fabricius, 1781)* – Hajmás-tározó (Réde): 2003. 04. 25., 1, BP–CsZ–MA.

Rhantus frontalis (MARSHAM, 1802)* – Hajmás-tározó (Réde): 2003. 04. 25., 1, BP-CsZ-MA.

Hydaticus seminiger (DE GEER, 1774) – Borostyán-kút (Bakonybél): 2004. 09. 23., 1, CsB-CsZ.
Dytiscus marginalis Linnaeus, 1758 – Gaja, E (Bakonycsernye): 2004. 09. 23., 4, CsB–CsZ – Patak, Luszti-dűlő (Balinka): 2004. 05. 25., 2 larva, CsB–CsZ.

NOTERIDAE

GYRINIDAE

SPERCHEIDAE

HELOPHORIDAE

Helophorus discrepans Rey, 1885* – Borostyán-kút (Bakonybél): 2003. 08. 17., 1, BP–CsZ–MA.

Helophorus nubilus FABRICIUS, 1776 – Cuha (Vinye): 2004. 05. 25., 1, CsB–CsZ – Cuhai-Bakony-ér (Réde): 2003. 08. 17., 1, BP–CsZ–MA – Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 2, CsB–CsZ – Gaja (Bakonynána): 2004. 05. 13., 1, CsB–CsZ.

HYDROPHILIDAE

Coelostoma orbiculare (FABRICIUS, 1775) – Borostyán-kút (Bakonybél): 2003. 08. 17., 1, BP–CsZ–MA.

Laccobius simulatrix (D’Orchymont, 1932* – Patak, Luszti-dűlő (Balinka): 2004. 05. 25., 1, CsB–CsZ.

Laccobius sinuatus Motschulsky, 1849* – Patak, Luszti-dűlő (Balinka): 2004. 05. 25., 1, CsB–CsZ.

Enochrus affinis (THUNBERG, 1794) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA.

Enochrus bicolor (FABRICIUS, 1792) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,

Enochrus coarctatus (GREDLER, 1863) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA – Fekete-vízfolyás, west arm (Nagyveleg): 2004. 09. 23., 1, CsB-CsZ.

Enochrus fuscipennis (THOMSON, 1884)* – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA – Mocsár, Malom-völgyi-patak, upper west arm (Olaszfalu): 2004. 05. 25., 1,

Enochrus fusciennis (THOMSON, 1884)* – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA – Velegi-vízfolyás, west arm (Nagyveleg: 2004. 09. 23., 1, CsB-CsZ.

Enochrus testaceus (FABRICIUS, 1801) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA – Fekete-vízfolyás, west arm (Nagyveleg): 2004. 09. 23., 1, CsB-CsZ.

Enochrus fuscipes (LINNAEUS, 1758) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,

Hydrobius fuscipes (LINNAEUS, 1758) – Borostyán-kút (Bakonybél): 2003. 04. 26., 2,
BP-CsZ-MA – Mocsár, Malom-völgyi-patak, upper west arm (Olaszfalu): 2004. 05. 25., 3, CsB-CsZ – Súri-patak (Súr): 2003. 04. 25., 1,

Hydrobius fusciennis (THOMSON, 1884)* – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,

Hydrobius quadripunctatus (HERBST, 1797) – Gerence, Akli (Zirc): 2003. 04. 26., 1,
BP-CsZ-MA – Mocsár, Malom-völgyi-patak, upper west arm (Olaszfalu): 2004. 05. 25., 1,

Helochares fuscipes (LINNAEUS, 1758) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,

Helochares lividus (FORSTER, 1855) – Borostyán-kút (Bakonybél): 2003. 04. 26., 1,
BP-CsZ-MA.

Helochares obscurus (O. F. MÜLLER, 1776) – Borostyán-kút (Bakonybél): 2003. 04. 26.,
1, BP-CsZ-MA – Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 5, CsB-CsZ – Fekete-vízfolyás, west arm (Nagyveleg): 2004. 09. 23., 1, CsB-CsZ.

Berosus luridus (LINNAEUS, 1761) – Hajmás-tározó (Réde): 2003. 04. 25., 1, BP-CsZ-MA.

DRYOPIDAE

ELMIDAE

Elmis maugetii LATREILLE, 1802* – Dudari-patak (Bakonyszentkirály): 2003. 08. 17., 1, BP–CsZ–MA.

Riolus subviolaceus (PH. MÜLLER, 1817)* – Gerence, Gerencepuszta (Bakonybél): 2003. 04. 26., 2, BP–CsZ–MA.

HETEROPTERA

Gerromorpha

HYDROMETRIDAE

MESOVELIIDAE

Mesovelia furcata MULSANT et REY, 1852* — Feketevíz-éri-tavak (Ácsteszér): 2003. 08. 17., 5, BP–CsZ–MA.

Mesovelia thermalis HORVÁTH, 1915* — Borostyán-kút (Bakonybél): 2003. 08. 17., 1, BP–CsZ–MA.

VELIIDAE

Gerridae

Nepomorpha

NEPIDAE

NAUCORIDAE

PLEIDAE

NOTONECTIDAE

CORIXIDAE

Cymatia rogenhoferi (FIEBER, 1864)* — Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 1, CsB–CsZ.

Sigara nigrolineata (FIEBER, 1848)* — Dudari-patak (Bakonyzentkírály): 2003. 08. 17., 2, BP-CsZ-MA.

Micronecta sp.* — Csurgói-víztároló (Fehérvárcsurgó): 2004. 05. 25., 2, CsB–CsZ – Szarvas-kút (Zirc): 2003. 08. 18., 6, BP-CsZ-MA.

TRICHOPTERA

RHYACOPHILIDAE

HYDROPSYCHIDAE

POLYCENTROPODIDAE

PSYCHOMYIDAE

Tinodes unicolor (PICTET, 1834) – Gaja (Bakonynána): 2003. 04. 27., 1, BP–CsZ–MA.

PHRYGANEIDAE

LIMNEPHILIDAE

Limnephilus auricula CURTIS, 1834 – Cuhai, Lukács-rét (Zirc): 2003. 04. 27., 1, BP-CsZ-MA.

Micropterna lateralis (Stephens, 1837) – Gerence, Öreg-Szarvad-árok (Balonybél): 2003. 04. 26., 1, BP–CsZ–MA.

Potamophylax cingulatus (Stephens, 1837)* – Gaja (Bakonyénana): 2003. 04. 27., 1, BP–CsZ–MA.

Potamophylax nigricornis (Pictet, 1834) – Aranyos-patak (Csesznek): 2003. 04. 25., 2, BP–CsZ–MA.

GOERIDAE

Goera pilosa (FABRICIUS, 1775) – Cuhai-Bakony-ér (Réde): 2003. 04. 25., 1, BP–CsZ–MA.

LEPTOCERIDAE

Mystacides niger (LINNAEUS, 1758) – Hajmás-tározó (Réde): 2003. 08. 17., 1, BP–CsZ–MA.

Notes on selected taxa

Siphlonurus armatus (EATON, 1870) – A North and Central European species, it is an oreotundral faunal element (LANDA and SOLDAN 1985). In Hungary it occurs in some localities of Transdanubia (ÚJHELYI 1966, 1979, TÓTH 1992a, 1992b, SZIRÁKI 1998). This was the most frequent species in the investigated area, the number of specimens was relatively large in the majority of collecting localities. This species prefers the littoral region of the slow flowing streams and drains with sandy and muddy bottom. Detritus feeder.

Baetis pentaphlebodes ÚJHELYI, 1966 – The pattern of distribution of this species is inadequately known. Probably it is a Central-European species but occurs in Spain too. In Hungary it is known from the Gödöllő Hills and from the Bihari-plain (CSABA et al. 2004, ÚJHELYI 1966, SMITH and ANDRIKOVICS 2000), lives in small streams of the hilly and lowland regions with muddy bottom and dense vegetation. Detritus and biofilm feeder. It was not known from the Bakony mountains previously.

Electrogena ujhelyii (SOWA, 1981) – This species was described by SOWA (1981) from the Balaton Uplands. Since then it was found in Austria, Germany, France and Italy. The pattern of distribution of the species is poorly known. In Hungary it occurs in the Mátra Mountains and the Dráva region as well (KISS et al. 2001, SZIRÁKI 1998). The species prefers the rhitral region of mid–mountain streams. Detritus and biofilm feeder. It is a frequent species in the Bakony Mountains.

Paraleptophlebia werneri ULMER, 1919 – It is a rare North and Central European species, arboreal faunal element (LANDA and SOLDAN 1985). Its range is wide but disjunct.

Hydronurus discretus discretus FAIRMAIRE et BRISOUT, 1859 – A Mediterranean species, but also occurs in Great Britain and Scandinavia. Its easternmost localities are known from the Caucasus and Iran. It lives mainly in streams feed by springs or forested, muddy-bottomed pools. The subspecies has only a few known localities in Hungary: Abaújszolnok, Darány, Felsőgagy, Miskolc, Nagyvisnyó, Kőszegi Mountains, Siófok, Szemere, Szuhafő and Orfu (ÁDÁM 1993, CSABA and MÓRA 2002, CSABA et al. 2004, GIDÓ and SZÉL 1998, HORVATOVICH 1981a).

Hydronurus discretus ponticus ZAITZEV, 1927 – This subspecies is known from Armenia, Greece, Russia and Turkey. In Hungary it has only a few known occurrence: Balatonalmádi, Balatonhenye, Budapest, Érd, Kőszeg Mountains, Miskolc, Siófok, Tihany (ÁDÁM 1993, 1994).

Hydronurus memnonius NICOLAI, 1822 – Known from North Africa and all over Europe, its easternmost localities are in Turkestan. In Hungary it was known from Aggtelek, Lesenceistvánd, Nagykovácsi, Orfu, Szemere, Szuhafő and Zádorfalva (ÁDÁM 1992, CSABA and MÓRA 2002, CSABA et al. 2004, MERKL 1999). It occurs in small water bodies, in springs or spring-fed streams, in most cases in moss or decaying leaves.

Agabus striolatus (GYLLENHAL, 1808) – It is a rare Central and North European species, occurs mainly in southern boreal and temperate zones. It is known from France and Great Britain to Moscow. In Hungary the species was found in only a few localities: Badacsonytördemic, Barcs, Lakitelek, Tabdi, Farkasfa, Kaposvár, Kéleshalom, Mosonmagyaróvár, Pocsaj, Orfu, Szeged and Zaláta (ÁDÁM 1992, 1994, unpublished data). It prefers small, forested, astatic waterbodies, usually occurs in dense mossy or sedgy detritus.

Helophorus discrepans REY, 1885 – This species is known from mountainous regions of Europe. East Asia and from Atlas Mountains. It occurs mainly in snowmelt pools and adjacent waterbodies of streams and springs. In Hungary it has sporadic occurrence, is known from Huszárok, Farkasgyepű, Mecsek Mountains and Révfülőp (CSABA et al. 2002). Previous and recent data of the species point to the fact, that this species got a foothold in lower mountains, moreover in hilly regions of Hungary.

Helophorus dorsalis (MARSHAM, 1802) – A European species. Among the Helophorus species known to occur in Hungary this is the only one which is associated exclusively with the forested, shady puddles. That is why this species is known from only a few localities in Hungary.

Laccobius simulatrix d’ ORCHYMONT, 1932 – The species occurs from East European territory to Midde Asia, and known from the Balkan, too. Its westernmost localities are in Austria and Italy. Rare in Hungary, only ten localities were known before: Barcs, Bodrogkereszttúr, Bugac, Darány, Győr, Miskolc: Jávorkút, Múcsony, Szalonna, Tabdi, Zaláta (CSABA et al 2002, 2004, MÓRA et al. 2005).

Berosus fulvus KUWERT, 1888 – Palaeartcr species, according to HEBAUER and KLAUSNITZER (1998) the species is frequent in the area of Lake Fertő, but there were known only six correctly identified specimens from Hungary (Máriabesnyô, Szeged,
These old specimens are from alkaline waterbodies exclusively. All these data are older than 50 years, so the recent record from Borostyán-kút confirms the occurrence of the species in the Hungarian fauna.

Aquarius najas (De Geer, 1773) — It is distributed in whole Europe, but rare species everywhere. The species is under the protection of the law in many countries in Europe, in Hungary as well. The species inhabits the slow-flowing and standing waters. New to the fauna of the Bakony.

Mesovelia thermalis Horváth, 1915 — European species, known from Romania, Ukraine and southwestern territory of Russia. The first Hungarian record of M. thermalis was given from the Borza-Holt-Körös, SE Hungary (Kiss 1999). It is regarded as thermophil species and endemic in the Carpathians (Benedek 1970; Horváth 1915, 1923; Nieser 1978; Paina 1978; Stichel 1955–56). Its occurrence in the Borostyán-kút is the second published record from Hungary. New to the fauna of the Bakony.

Rhyacophila obliterata McLachlan, 1863 — Palaearctic species, it lives in fast-flowing clear streams. It is one of the rarest and endangered rhyacophilids in Hungary, found only in the Northern Mountains thus far (Nógrádi and Uherkovich 2002). New to the fauna of the Bakony.

Potamophylax cingulatus (Stephens, 1837) — The species is distributed in whole Europe. It was found in many mountainous regions of Hungary, but is very rare everywhere and one of the vulnerable caddisflies (Nógrádi and Uherkovich 2002). New to the fauna of the Bakony.

Acknowledgement

This work was supported by the „Bakony survey program” of the Bakony Natural History Museum (thanks to Csaba Kutasi and Ágota Kasper). Our sincere thanks are due to Zsuzsanna Pap for assistance in the field.

Cited literature

Abstract: Aquatic beetle collection of the Bakony Natural History Museum, Zirc, Hungary (Coleoptera: Hydradephaga and Hydrophiloidea). In the aquatic beetle collection of Bakony Natural History Museum 1190 specimens belonging to 111 species are deposited (Haliplidae 6, Dytiscidae 45, Noteridae 2, Gyrinidae 5, Spercheidae 1, Hydrochidae 2, Helophoridae 7, Hydrophilidae 43 spp.). The occurrence of Hydroopus ferrugineus STEPHENS, 1829, Agabus striolatus (GYLLENHAL, 1808), Ilybius neglectus (ERICHSON, 1837), Hydaticus continentalis J. BALFOUR-BROWNE, 1944, Dytiscus latissimus LINNAEUS, 1758 and Gyrinus suffriani SCRIBA, 1855 are important faunistic results.

Bevezetés

Az 1962-ben Papp Jenő által indított „A Bakony természeti képe” kutatóprogram nyomán a Bakony koleopterológiai kutatása is fellendült. Számos gyűjtő gyarapította vízibogarakkal is a Bakony Természettudományi Múzeum gyűjteményét, melyek közül kiemelkedik Papp Jenő, Tóth Sándor, Tóth László és Rézbányai László tevékenysége. Ádám László a kutatási program keretében 1979-ben a Dytiscidae, Haliplidae és Gyrinidae családok kutatását is végezte, de önellő publikáció ebben a tárgyban nem született.

1 Pécsi Tudományegyetem, Természettudományi Kar Általános és Alkalmazott Ökológiai Tanszék, 7624 Pécs, Ifjúság útja 6,
2 Magyar Természettudományi Múzeum, Állattár, 1088 Budapest, Baross u. 13.,
3 Bakonyi Természettudományi Múzeum, 8420 Zirc, Rákóczi tér. 1.

Anyag és módszer

A múzeum gyűjteményének anyaga nagyrészt a Bakony területéről származik, de van néhány környező területekről (pl. a Pilisből) és Romániából származó példány is. A teljeségére törekedve e példányok adatai is szerepelnek a listában. Egyes esetekben a cédula alapján nem tudunk egyértelmű közigazgatási hovatartozást megjelölni, ilyenkor a cédulán szereplő adatokat változtatás nélkül közöltük. Amennyiben a cedulákon volt információ a gyűjtés módjára vonatkozóan, akkor ezt is szerepellettük.

A gyűjteményben található fajok jegyzéke

HALIPLIDAE

Haliplus fluviatilis Aubé, 1836 – Balatonalmádi, Budatava, 1976. 07. 26., 1, TS – Fenyőfő, 270 m, 1967. 07. 1-10., 1, RL.

Haliplus immaculatus Gerhardt, 1877 – Fenyőfő, 270 m, 1967. 07. 1-10., 1, RL – Somberek. 1959. 05. 23., 1, PJ.

Haliplus variegatus Sturm, 1834 – Fenyőfő, Pisztángos-tó, 1971. 07. 08., 1, TL.

Peltodytes caesus (Duftschmid, 1805) – Veszprémg-Gulafirátót, Halastó, 1971. 11. 06., 1, TS – Zirc, Arborérum, halastó, 1971. 07. 06., 1, TS.

Dytiscidae

Hydroporus ferrugineus Stephens, 1829 – Hárskút, Esztergáli-völgy, 1958. 05. 10., 1, PJ.

Hydroporus fuscipennis Schaum, 1868 – Lesenceistvánd, 1974. 04. 10., 1, TL.

Hydroporus nigrita (Fabricius, 1792) – Balatonalmádi, Ferenc-forrás, 1962. 05. 06., 3, PJ – Herend, Som-hegy, pocsolyából egyelve, 1967. 04. 13., 1, PJ.

Porhydrus lineatus (Fabricius, 1775) – Lesenceistvánd, 1974. 04. 10., 1, TS.

Hyphydrus ovatus (Linnaeus, 1761) – Csopak, 1955. 04. 07., 1, MM – Szigliget, Arborérum, 1970. 09. 16., 2, TS.

103
Gyulafirájtót, Halastó környéke, 1971. 05. 18., 3, TS – Zirc, Aklipuszta, 1973. 09. 06., 1, TL; Arborétum, halastó, 1971. 07. 06., 11, TS.

Laccophilus poecilus KLUG, 1834 – Csopak, 1955. 04. 07., 3, MM.

Agabus nebulosus (FÖRSTER, 1771) – Hajmáskér; Ór-hegy nyugati alján, Séd mente, 1996. 05. 08., 1, BJ.

Agabus striolatus (GYLLENHAL, 1808) – Zalaszántó, Kovácsi hegy, erdei forrás, egyelve, 1960. 06. 11., 1, PJ.
Agabus uliginosus (LINNAEUS, 1761) – Lovas, Király-kút, 1976. 05. 01., 1, PJ.

Ilybius neglectus (ERICHSON, 1837) – Balatonalmádi, Ferenc-forrás, 1962. 05. 06., 1, PJ – Fenyőfő, Kiszépalma környéke, 1965. 05. 25–31., 1, PJ.

Ilybius subaeneus ERICHSON, 1837 – Németbánya, Laposok, gémeskút vályújából, 1960. 07. 06., 1, PJ – Veszprém-Gyulafirátót, parttaposás, 1971. 05. 18, 1, TS.

Rhantus frontalis (MARSHAM, 1802) – Hajmáskér, Őr-hegy nyugati alján, Séd mente, 1996. 05. 08., 1, BZ – Veszprém, Séd, 1957. 06. 04., 1, PJ.

Hydaticus continentalis J. Balfour-Browne, 1944 – Ugód, 1973. 07. 11., 1, BJ.

Hydaticus grammicus (Germar, 1830) – Balatonalmádi, Káptalanfüred, 1961. 08. 06., 1, PM – Zalavár, 1954. 09., 2, LR.

Hydaticus transversalis (Pontoppidan, 1763) – Veszprém-Gyulafirátót, Halastó környéke, 1971. 05. 18., 1, TS – Zalavár, 1954. 09., 2, LR.

Graphoderus austriacus (Sturm, 1834) – Veszprém, Séd, 1967. 04., 1, PJ; Tekeres-völgy, 1965. 09. 19., 1, BL – Veszprém-Gyulafirátót, Halastó környéke, 1971. 05. 18., 1, TS.

Dytiscus circumflexus Fabricius, 1801 – Öcs, Nagy-tó, 1973. 10. 29., 1, TS.

Dytiscus latissimus Linnaeus, 1758 – Balatonalmádi, Káptalanfüred, 1961. 08. 06., 1, PM – Veszprém, egyetem, szökőkútóból egyelve, 1960. 07. 08., 1, PJné.

NOTERIDAE

GYRINIDAE

Gyrinus paykulli Ochs, 1927 – Bakonybél, Gerence-völgy, 1973. 09. 03., 1, BA.

Gyrinus suffriani Scriba, 1855 – Nyirád, Felsőnyirádi erdő, 1965. 06. 23–25., 1, PJ.

SPERCHEIDAE

Spercheus emarginatus (Schaller, 1783) – Lesenceistvánd, 1974. 04. 10., 1, TS – Nagyvázsony, Semlyékes-tó, talajcsapda, 2002. 06. 14., 1, KCs.

HYDROCHIDAE

Hydrochus crenatus (Fabricius, 1792) – Balatonfüred, 1977. 05. 23., 1, ÁL – Csopak, 1955. 04. 07., 1, MM.

Hydrochus elongatus (Schaller, 1783) – Balatonfüred, 1977. 05. 23., 1, ÁL.
HELOPHORIDAE

Helophorus dorsalis (MARSHAM, 1802) – Németbánya, Vadászínház környéke, 1967. 05. 29.–06. 02., 1, PJ – Veszprém-Gyulafirártót, Büdöskút környéke, 1968. 04. 26., 2, PJ.

Helophorus redtenbacheri KUWERT, 1885 – Veszprém-Gyulafirártót, Büdöskút környéke, 1968. 04. 26., 1, PJ.

HYDROPHILIDAE

Sphaeridium bipustulatum FABRICIUS, 1775 – Németbánya, vadászínház környéke, 1964. 06. 11–13., PJ – Somlóvásárhely, Somló, ex faeces Bovis tauri, 1968. 06. 27., PJ – Veszprém-Kádárta, Halastavak, 1996. 05. 09., 1, KCs – Zánka, Cserkúti-patak, 1996. 05. 03., 1, KCs.

Cercyon analis (PAYKULL, 1798) – Dudar, 1983. 06-07., fénycsapda – Zirc, arborétum, 1973. 03. 30., rostálás, TL.

Cercyon haemorrhoidalis (FABRICIUS, 1775) – Veszprémm, 1954. 08., MM; Csátár-hegy, 1957. PJ.

Cercyon pygmaeus (ILLIGER, 1801) – Vilónya, 1978. 09. 9., RI.

Kádárta, halastavak, 1996. 05. 9., KCs – Kup, Bitva-part, 1974. 09. 05. – Zirc, Cuha-völgy, 1972. 08. 9., TL.

Anacaena globulus (PAYKULL, 1798) – Herend, Somhegy, pocsolyából egyelve, 1967. 04. 13., PJ.

Anacaena lutescens (STEPHENS, 1829) – Balatonfüred, 1974. 04. 27., Tóth S. – Fenyőfő, Kisszépalma környéke, 1965. 05. 25-31., PJ.

Laccobius minutus (LINNAEUS, 1758) – Zirc, 1964. 07. 10., 1, PJ.

Laccobius striatulus (FABRICIUS, 1801) – Balatonhenye, 1978. 04. 23., 1, RI – Veszprém-Gyulafirátót, Győkeres, pocsolyából egyelve, 1967. 05. 04., 1, PJ.

Chaetarthria seminulum (HERBST, 1797) – Fenyőfő, Pisztrángos-tó, 1971. 07. 08., 1, TL.

Cymbiodyta marginella (FABRICIUS, 1792) – Balatonfüred, 1977. 05. 23., 4, ÁL – Fenyőfő, 270 m, 1968. 04. 20–30., 1, RL; Pisztrángos-tó, 1971. 07. 08., 1, TL – Olaszfalu, Malom-völgy, fűháló, 1969. 04. 30., 1, PJ – Tihany, fénycsapda, 1983. 05. 06., 1 – Veszprém, 1954. 06., MM.

Enochrus affinis (THUNBERG, 1794) – Fenyőfő, 270 m, 1967. 07. 01–10., 1, RL; 1968. 04. 20–30., 1, RL – Ócs, Nagy-tó környéke, 1971. 05. 27., 1, TS – Tihany, 1954. 05., 1, MM.

Enochrus fuscipennis (THOMSON, 1884) – Zirc, 1964. 07. 10., 1, PJ.

Enochrus melanopecephalus (OLIVIER, 1792) – Balatonfüred, 1977. 05. 23., 2, ÁL – Csupak, fénycsapda, 1976. 07. 31.–08. 01., 1.

Helochares lividus (FÖRSTER, 1855) – Veszprém, Rákóczi u. 3., 1960. 11. 10., 1, PJ; Tekeres-völgy, 1966. 08. 15., 1, MM – Veszprém-Gyulafirátót, Halastó környéke, 1971. 05. 18., 1, TS.

Hydrochara flavipes (STEVEN, 1808) – Bakony, Cuha-völgy, 1957. 06. 27., 1, PJ – Berhida, 1954. 08., 1, LR – Hajmáskér, Séd-menti Őr-hegy nyugati alján, 1996. 05. 08., 1, BZ – Kékkút, Kornyi-tó, 1976. 06. 13., 5, ÁL – Veszprém-Gyulafirátót, Aranyos-patak, 1976. 08. 02., 1, BJ.

Hydrophilus aterrimus ESCHSCHOLTZ, 1822 – Balatonalmádi, 1954. 10. 10., 1, MM – Zalavár.

Limnoxenus niger ZSCHACH, 1788 – Bakony, Cuha-völgy, 1955. 05. 14., 1, MM.

Berosus luridus (LINNAEUS, 1761) – Balatonalmádi, Ferenc-forrás, 1962. 05. 06., 1, PJ – Veszprém-Gyulafirátót, Gyökeres, pocsolyából egyelve, 1967. 05. 04., 1, PJ.

Berosus spinosus (STEVEN, 1808) – Bakonyszentlászló, Vinye Sándor major, Cuha, 1960. 05. 17., 1, PJ – Csupak, fénycsapda, 1976. 07. 09–10., 1 – Fényőfő, UV lámpa, 1969. 07., 1, RL.

Irodalom

ADATOK A MINDSZENTKÁLLAI ÖREGHEGY
BOGÁRFUAJÁJÁHOZ (INSECTA: COLEOPTERA)

ROZNER ISTVÁN
Budapest

Bevezetés
A Balaton-felvidéken, a Káli-medencét övező hegyek között találjuk a Mindszentkálla község fölé emelkedő Öreghegyet. Az Öreghegy név, mint hazánk nagyon sok helynévénél, szőlőhegyet jelent. A hegytömb legmagasabb kiemelkedése a Kopasz-hegy (302 m), ezt követi magassági sorrendben a Mátyás-domb (298 m), a Püspök-domb (266 m), a Pipa-hegy (260 m) és a Szűcs-domb (234 m).

Az Öreghegy bogárfaunájának kutatása
A Bakony hegyében rendszeres coleopterológiai kutatások folytak az utóbbi évtizedekben, főleg “A Bakony Természeti Képe” kutatási program keretében. Ezek a kutatások természetesen érintették a Balaton-felvidéket, amely a Bakony egyik kistája. A kutatások eredményeiről számos publikáció jelent meg, de ezekben nem találunk adatokat a mindszentkállai Öreghegyre vonatkozóan. A gyűjtött fajok jegyzékében feltüntettem az
egyes fajok bakonyi előfordulását kistájanként a rendelkezésemre álló összefoglaló munkák alapján.

Az összetett adatforrásokkal ismertek és az adatok figyelembe vételével a bakonyi fajlista összeállításában vannak szerepelve.

A következő bogárcsaládokról, amelyek előfordultak a mindszentkállai Öreghegyen, jelenleg még nincs összefoglaló irodalom: Hydrocoris, Scaphiidae, Leiidae, Nitidulidae, Laemophloeidae, Phalacridae, Byturidae, Coccinellidae, Latrididae, Lucanidae, Melolonthidae, Rutelidae, Cetoniidae, Bruchidae, Anthribidae, Nanophyidae, Curculionidae, Scolytidae.

Ezeknek a családoknak Mindszentkállán gyűjtött fajai, eltekintve néhány eddigi megjelent szórvány adattól, a Bakony-hegység, ezen belül a Balaton-felvidéki bogárfaunájára nézve új adatokat jutottak.

A következő adatokat figyelembe vettük: a fajok gyűjtési adatain kívül a szakirodalomban található állatföldrajzi besorolást, valamint a kistájankénti bakonyi előfordulásukat is közöltem.

A gyűjtött fajok jegyzékében csak nagyon kevés rövidítést alkalmaztunk. Ezek a gyűjtők neveire és a bakonyi kistájakra vonatkoznak. A szokástól eltérésen nem írtam ki az egyes helyeken gyűjtött példányzámot, mert az nem ad hű képet a fajsűrűségről. Úgyancsak nem tüntettem fel a gyűjtött példányok ivari megoszlását.

A gyűjtött fajok jegyzékében csak nagyon kevés rövidítést alkalmaztunk. Ezek a gyűjtők neveire és a bakonyi kistájakra vonatkoznak. A szokástól eltérésen nem írtam ki az egyes helyeken gyűjtött példányzámot, mert az nem ad hű képet a fajsűrűségről. Úgyancsak nem tüntettem fel a gyűjtött példányok ivari megoszlását.

A gyűjtött fajok jegyzéke

CARABIDAE – FUTÓBOGARAK

Hydroporidae – Paránycsíkrogarak (A családról nincs összefoglaló bakonyi irodalom)

Staphylinidae – Holyvák

Bisnius politus (LINNAEUS, 1758) – Öreghegy: 1994. V. 2. RI

116

AGYRTIDAE

SILPHIDAE – DÖGBOGARAK

117

SCAPHIDIIDAE – SAJKABOGARAK
(A családról nincs összefoglaló bakonyi irodalom)

HISTERIDAE – SUTABOGARAK

LEIODIDAE – PECEBOGARAK
(A családról nincs összefoglaló bakonyi irodalom)

BUPRESTIDAE – DÍSZBOGARAK

ELATERIDAE – PATTANÓBOGARAK

OMALISIDAE – ÁLHAJNALBOGARAK

LAMPYRIDAE – SZENTJÁNOSBOGARAK

CANTHARIDAE – LÁGYBOGARAK

DERMESTIDAE – SZALONNABOGARAK

CLERIDAE – SZÚFARKASOK

MALACHIIDAE – BIBIRCSESBOGARAK

DASYTIDAE – KARIMÁSBOGARAK

121
NITIDULIDAE – FÉNYBOGARAK
(A fajok bakonyi előfordulásáról csak néhány irodalmi adat található)
LAEMOPHLOEIDAE – SZEGÉLYESLAPBOGARAK
(A családról nincs összefoglaló bakonyi irodalom)
PHALACRIDAE – KALÁSZBOGARAK
(A családról nincs összefoglaló bakonyi irodalom)
BYTURIDAE – MÁLNABOGARAK
(A fajokról a Bakonyban nincs irodalmi elterjedési adat)
COCCINELLIDAE – KATICABOGARAK
(Csak a Balaton-felvidékről nincs irodalmi elterjedési adat)

LATRIDIIDAE – PUDVABOGARAK

TENEBRIONIDAE – GYÁSZBOGARAK

Melanyridae – Komorkák

Oedemeridae – Álcincérek

MELOIDAE – HÓLYAGHÚZÓ BOGARÁK

PYROCHROIDAE – BÍBOR BOGARÁK

SALPINGIDAE – ÁLORMÁNYOSOK

ANTHICIDAE – FÜRGE BOGARÁK

ADERIDAE – KORHÓBOGARÁK

LUCANIDAE – SZARVASBOGARÁK

(Da családrról nincs összefoglaló bakonyi irodalom)

APHODIIIDAE – GÁNÉJBÚVÓ BOGARÁK

SCARABAEIDAE – GANÉJTÚRÓK

MELOLONTIDAE – CSEREBOGARÁK
(A családról nincs összefoglaló bakonyi irodalom)

Rutelidae – Sziployok
(A családról nincs összefoglaló bakonyi irodalom)

Cetoniidae – Rózsabogarak
(A családról nincs összefoglaló bakonyi irodalom)

Cerambycidae – Cincérek

CHRYSOMELIDAE – LEVÉLBOGARAK

BRUCHIDAE – ZSIZSIKEK
(A családról nincs összefoglaló bakonyi irodalom)

Bruchidius seminarius (Linnaeus, 1767) – Öreghegy: 1994. VI. 3-6. RI

Bruchus atomarius (Linnaeus, 1761) – Öreghegy: 1993. V. 1. RI

ANTHRIBIDAE – ORROSOBOGARAK
(A családról nincs összefoglaló bakonyi irodalom)

Anthribus nebulosus Förster, 1771 – Öreghegy: 1993. V. 1. RI

Urodon suturalis (Fabricius, 1792) – Öreghegy: 2001. VI. 23. RI

ATTELABIDAE – LEVÉLSODRÓFÉLÉK

134
RHYNCHITIDAE – ESZELÉNYEK

APIONIDAE – CICKÁNYORMÁNYOSOK

Protapion varipes (Germar, 1817) – Ōreghegy: 2001. IV. 30. RI – A Bakonyban: Bf, Kh, DB, ÉB.

Cionus thapsus (Fabricius, 1792) – Ōreghegy: 1997. V. 17-18. RI
Cleonis pigra (Scopoli, 1763) – Ōreghegy: 2001. V. 20. RI

Curculio glandium Marsham, 1802 – Ōreghegy: 1993. V. 1. RI
Cyphocleonus trisulcatus (Herbst, 1795) – Ōreghegy: 1989. VIII. 5. RI

NANOPHYIDAE – FŰZÉNYORMÁNYOSOK
(A családorról nincs összefoglaló bakonyi irodalom)

CURCULIONIDAE – ORMÁNYOS BOGARAK
(A családorról nincs összefoglaló bakonyi irodalom)

Acallocrates denticollis (Germar, 1824) – Kő-hegy: 1995. V. 1. SZHH.
Amalus scortillum (Herbst, 1795) – Ōreghegy: 2001. IV. 30. RI
Archarius pyrrhoceras (Marsham, 1802) – Ōreghegy: 1993. V. 23. RI
Baryplethis mollicomus (Ahrens, 1812) – Hajagos: 1995. VI. 30. SZHH.
Brachyderes incanus (Linnaeus, 1758) – Kő-hegy: 1995. V. 1. SZHH.
Brachysomus villosulus (Germar, 1824) – Ōreghegy: 1994. V. 13-16. RI
Ceutorhynchus erysimi (Fabricius, 1877) – Ōreghegy: 2001. IV. 30. RI
Ceutorhynchus napi Gymnent, 1837 – Ōreghegy: 1993. IV. 18. RI
Ceutorhynchus obstrictus (Marsham, 1802) – Ōreghegy: 1990. VII. 7. RI
Ceutorhynchus palidactylus (Marsham, 1802) – Pap-hegy: 2000. IV. 23. RI
Cionus thapsus (Fabricius, 1792) – Ōreghegy: 1997. V. 17-18. RI
Cleonis pigra (Scopoli, 1763) – Ōreghegy: 2001. V. 20. RI
Cocciostes lamii (Fabricius, 1792) – Ōreghegy: 2000. IV. 22-23. RI
Curculio glandium Marsham, 1802 – Ōreghegy: 1993. V. 1. RI
Cyphocleonus trisulcatus (Herbst, 1795) – Ōreghegy: 1989. VIII. 5. RI

Gymnetron rostellum (HERBST, 1795) – Öreghegy: 1993. IV. 18. RI

Larinus jaceae (FABRICIUS, 1775) – Öreghegy: 1990. VI. 24. RI

Lepeurus armatus WEISE, 1893 – Öreghegy: 1990. IV. 1. RGY.

Lixus brevipes CH. BRISOUT, 1866 – Öreghegy: 1999. V. 15. RI

Mecaspis alternans (HERBST, 1795) – 1989. IV. 7. RGY.

Mecinus pyraster (HERBST, 1795) – Öreghegy: 1994. VI. 3-6. RI

Mecinus plantanignis (EPPESLHEIM, 1875) – Öreghegy: 1992. VII. 18. RI

Magdalis cerasi (LINNAEUS, 1758) – Öreghegy: 1993. V. 1. RI

Mecaspis alternans (HERBST, 1795) – 1989. IV. 7. RGY.

Oedecnemidius pictus (GYLLENHAL, 1834) – Öreghegy: 1993. V. 23. RI

Omias rotundatus (FABRICIUS, 1792) – Öreghegy: 2000. IV. 24. RGY.
Oprohinus consputus (Germár, 1824) – Öreghegy: 1994. VI. 3-6. RI
Otiornynchus laevigatus (Fabricius, 1775) – Öreghegy: 1997. VI. 8. RGY.
Otiornynchus ovatus (Linnaeus, 1758) – Kő-hegy: 1995. VI. 30. SZHH
Phyllobius pomaceus (Gyllenhal, 1834 – Öreghegy: 2001. IV. 30. RI
Pseudocoleus cinereus (Schrank, 1781) – Öreghegy: 2003. IV. 21. RI
Rhinoncus castor (Fabricius, 1792) – Öreghegy: 1992. V. 13-18. RI
Rhinusa antirrhini (Paykull, 1800) – Öreghegy: 1999. VII. 17. RI
Rhinusa collarum (Gyllenhal, 1813) – Öreghegy: 1993. V. 1. RI
Rhinusa linariae (Panyer, 1796) – Öreghegy: 1993. V. 23. RI
Rhinusa netum (Germár, 1821) – Öreghegy: 1989. VII. 8-9. RI
Sciaphilus asperatus (Bonsdorff, 1785) – Öreghegy: 1997. VI. 8. RGY.

138

Sitona lateralis GYLENHAL, 1834 – Öreghegy: 1992. V. 17. PA

Sitona puncticollis STEPHENS, 1831 – Öreghegy: 1990. VII. 8-9. RI

Sitona sulcifrons (THUNBERG, 1798) – Öreghegy: 1992. V. 17. PA

Smicronyx jungermanniae (REICH, 1797) – Öreghegy: 2001. VI. 23. RI

Trachyphloeus aristatus (GYLENHAL, 1827) – Kő-hegy: 1995. V. 1. SZHH.

Tychius squamulatus GYLENHAL, 1836 – Öreghegy: 1993. VI. 23. RI

SCOLYTIDAE – SZÚFÉLÉK
(A családról nincs összefoglaló bakonyi irodalom)
Xylocleptes bispinus (DUFTSCHMID, 1825) – Öreghegy: 1993. IV. 18. RI

Összefoglalás

A mindszentkállai Öreghegyen az 1989 és 2003 között végzett kutatások során 47 bogárcsalád 589 faja került begyűjtésre. A gyűjtött fajok családonkénti megoszlása a következő:

<table>
<thead>
<tr>
<th>Család</th>
<th>Faj</th>
<th>Család</th>
<th>Faj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carabidae</td>
<td>33</td>
<td>Tenebrionidae</td>
<td>16</td>
</tr>
<tr>
<td>Hydroporidae</td>
<td>1</td>
<td>Melandryidae</td>
<td>1</td>
</tr>
<tr>
<td>Staphylinidae</td>
<td>35</td>
<td>Oedemeridae</td>
<td>6</td>
</tr>
<tr>
<td>Agyrtidae</td>
<td>1</td>
<td>Meloidae</td>
<td>4</td>
</tr>
<tr>
<td>Silphidae</td>
<td>8</td>
<td>Pyrochroidae</td>
<td>2</td>
</tr>
<tr>
<td>Scaphidiidae</td>
<td>2</td>
<td>Salpingidae</td>
<td>1</td>
</tr>
<tr>
<td>Histeridae</td>
<td>8</td>
<td>Anthisidae</td>
<td>4</td>
</tr>
<tr>
<td>Leiodidae</td>
<td>2</td>
<td>Aderidae</td>
<td>1</td>
</tr>
<tr>
<td>Buprestidae</td>
<td>18</td>
<td>Lucanidae</td>
<td>2</td>
</tr>
<tr>
<td>Elateridae</td>
<td>20</td>
<td>Aphodiidae</td>
<td>12</td>
</tr>
<tr>
<td>Omalisidae</td>
<td>1</td>
<td>Scarabaeidae</td>
<td>10</td>
</tr>
<tr>
<td>Lampyridae</td>
<td>1</td>
<td>Melolonthidae</td>
<td>6</td>
</tr>
<tr>
<td>Cantharidae</td>
<td>10</td>
<td>Rutelidae</td>
<td>2</td>
</tr>
<tr>
<td>Dermestidae</td>
<td>3</td>
<td>Cetoniidae</td>
<td>6</td>
</tr>
<tr>
<td>Cleridae</td>
<td>3</td>
<td>Cerambycidae</td>
<td>32</td>
</tr>
<tr>
<td>Malachiidae</td>
<td>7</td>
<td>Chrysomelidae</td>
<td>113</td>
</tr>
<tr>
<td>Dasytidae</td>
<td>5</td>
<td>Bruchidae</td>
<td>8</td>
</tr>
<tr>
<td>Nitidulidae</td>
<td>10</td>
<td>Anthribidae</td>
<td>2</td>
</tr>
<tr>
<td>Laemophloeidae</td>
<td>1</td>
<td>Rynchitidae</td>
<td>6</td>
</tr>
<tr>
<td>Phalacridae</td>
<td>1</td>
<td>Apionidae</td>
<td>24</td>
</tr>
<tr>
<td>Byturidae</td>
<td>2</td>
<td>Nanophyidae</td>
<td>2</td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>22</td>
<td>Curculionidae</td>
<td>130</td>
</tr>
<tr>
<td>Latridiidae</td>
<td>2</td>
<td>Scolytidae</td>
<td>2</td>
</tr>
</tbody>
</table>

Összesen: 589 faj

Mindazoknak a bogárcsaládoknak a fajairól, amelyekről létezik összefoglaló bakonyi szakirodalom, lehetőség nyílt a hegyseg bogárfaunájának kiegészítésére. Ennek alapján a Bakony hegyseg bogárfaunájának új fajai a következők: STAPHYLINIDAE: Oxypoda opaca (GRAV.), Palporus nitidulus (FABR), Philontus laminatus (Cr.), Rugilus erichsonii FAUV., Rugilus rufipes GERM. Schinomosa nigricollis (STEPH.), Sepedophilus obtusus (LUZE),
Trogophloeus manchuricus BERNH.; BUPRESTIDAE: Habroloma geranii SILF.; ELATERIDAE: Ampedus forticornis (SCHN.), Ampedus sinuatus GER., Cardiophorus nigerrimus ER., Hemicrepidius hirtus (HERBST), Melanotus castanipes (PAYK.), Neopristilophus insittius (GERM.); DERMESTIDAE: Anthrenus scrophulariae (L.), Atttagenus pellio (L.); SCARABAEIDAE: Onthophagus joannae (GOLJAN); CHRYSOMELIDAE: Cassida azurea FABR., Chaetocnema arida (FOURDR.), Chaetocnema conducta (MOTSCH.), Chrysolina susterai BECH., Longitarsus absynthii i KUTSCH., Phyllotreta astrachanica (L.); APIONIDAE: Protapion fulvipes (FOURCR.).

A Balaton-felvidék kistájára új fajok a következők: CARABIDAE: Lebia chlorocephala (HOFFM.); STAPHYLINIDAE: Heterothops dissimilis (GRAV.), Neobiusinus procerulus (GRAV.); Polychara languinosa (GRAV.); ELATERIDAE: Ampedus sinuatus GERM.; CHRYSOMELIDAE: Aphytis nonstriata (GZE.), Batophila mbi (PAYK.), Cassida nobilis L., Cassida stigmatica SUFFR., Chaetocnema compressa (LETZN.), Cryptocephalus octopunctatus (SCOP.), Lochmaea suturalis (THOMS.), Sphaeroderma rubidum (GRAELLS); APIONIDAE: Omphalapion hookerorum KIRBY.

Az általam feldolgozott bogárcazálokkal fajai közül a Bakony-hegységre újak a következők:

Phyllotreta astrachanica LOPATIN, 1977 – A fajt a doni kerületből, Asztrahán környékéről írták le. Elterjedése meggegyezik a Phyllotreta diademata Fidoras, 1860 fajjal. Európai sztyepefaj. Magyarországon a jelenléte 1982-ben jeleztek. Előfordul a Kiskunságban (Orgovány, Kunfehértó), a Dunántúlon (Dombóvár, Nagybajom, Szőce, a Vértes hegység) és Újszegeden. Tápnövénye az Alliaria officinalis, a Raphanus sativus, és a Rorippa islandica.

Köszönetnyilvánítás

Irodalom

143

A szerző címe (Author’s address): ROZNER István H-1116 Budapest, XI. Tétényi-út 129.
FOLIA MUSEI HISTORICO-NATURALIS BAKONYIENSIS
A BAKONYI TERMÉSZETTUDOMÁNYI MÚZEUM KÖZLEMÉNYEI
Zirc, 22–2005; 145–163

BAKONY-HEGYSÉG GYILKOSFÜRKÉSZ FAUNÁJÁNAK
ALAPVETÉSE (HYMENOPTERA, BRACONIDAE)
VI. HELCONINAE, BRACHISTINAE, CHELONINAE
ÉS SIGALPHINAE

PAPP JENŐ
Magyar Természettudományi Múzeum, Budapest

Abstract: A monograph of the braconid fauna of the Bakony Mountains (Hymenoptera, Braconidae) VI.
Helconinae, Brachistinae, Cheloninae and Sigalphinae – A total of 870 braconid specimens served for the
detection of 116 species of the four subfamilies indicated in the title. The majority of the species was dis-
covered in the fauna of Hungary by the most recent faunistic exploration. Herewith two species, Chelonus
subcorvulus TOBIAS and Microchelonus minifossa TOBIAS, are recorded as new to the Hungarian fauna. The
collecting, distributional data and other contributions are summarized for every species belonging to the
respective four subfamilies.

Bevezetés
A címben jelzett négy gyilkosfürkész (Braconidae) alcsaládaknak kerekítve 870 példánya állt rendelkezésre, aminek meghatározása és taxonómiai értékelése alapján 116 faj vált ismertté a Bakony-hegység faunájában. Alcsaládok szerint a bakonyi fajok és példányszámuk a következőképpen oszlik meg (zárójelben tüntetjük fel a magyarországi fajok számát): Helconinae 13 faj / 130 példány (26), Brachistinae 42 faj / 313 példány (84), Cheloninae 60 faj / 420 példány (120) és Sigalphinae 1 faj / 2 példány (2). Az csak a számok pajkos játéka, hogy a bakonyi négy braconida alcsaládaknak fajszáma éppen a fele a magyarországi fajok számának. Szinte valamennyi fajról a közelmúlt kutatásai során bizonyosodott be, hogy a Bakonyban is él, továbbá számos faj a magyar faunára nézve bizonyult új (PAPP 1983 – 2002). Jelen közleményben két fajjal: Chelonus subcorvulus TOBIAS, 1964 és Microchelonus minifossa TOBIAS, 1986 egészítjük ki a magyar faunára nézve új fajokat. A szükségesnek mutatkozó taxonómiai, faunisztikai és állatföldrajzi kiegészítéseket/megjegyzéseket az alcsaládok, génuszok bevezetőjében, ill. a fajoknál fejtjük ki.

A Bakony-hegység, mint állatföldrajzi faunatáj a Piliscicum faunajárásban belül öt faunakistájából áll össze (MÓCZÁR 1967, 1972; PAPP 1968). Jelen tanulmány tárgyát képező négy gyilkosfürkész alcsalád fajainak a lelőhelyeit a faunakistájak sorrendjében soroljuk fel, ezen
belül a lelőhelyek betű szerinti sorrendben követik egymást. A faunakistájak nevét betűszóval („mozaikszóval”) rövidítettük a faunisztikai részben, feloldásukat alább adjuk meg:

BF = Balaton-felvidék
KH = Keszthelyi-hegység
DB = Délí Bakony

ÉB = Északi Bakony (v. Magas Bakony)
KB = Keleti Bakony

A kialakult gyakorlatnak megfelelően valamennyi faj gyűjtési adataiban külön jelöljük meg a nőstények (?) és a hímek (o”) példányszámát. A lelőhelyek után következő, gondolatjel között megadott római számok azokat a hónapokat összesítik, amikor a szóbanforgó faj példányait gyűjtötték a Bakonyban.

A négy gyilkosfürkész alcsalád (Helconinae, Brachistinae, Cheloninae, Sigalphinae) itt publikált tárgyi anyagának zömét a zirci Bakonyi Természettudományi Múzeumban, jórészt másodpéldányokat és néhány unikumot pedig a budapesti Magyar Természettudományi Múzeumban helyeztük el. A jól preparált, gyűjtési adatokkal és det.-cédulával ellátott gyilkosfürkész dokumentációs anyag megőrzelése a jövőbeni esetleges felülvizsgálatra biztosított a két múzeum állandósága miatt.

HELCONINAE

Az európai és így a magyarországi Helconinae fajokat három tribusba soroljuk: Helconini, Diospilini és Cenocoeliini. Magyarországon a három tribus génsz- és fajszáma a következőképp oszlik meg: Helconini 3 – 8, Diospilini 5 – 16 és Cenocoeliini 1 – 2, azaz a Helconinae alcsaládát Magyarországon 9 génsz ill. 26 faj képviseli. A Bakony-hegység faunatáján a Cenocoeliini nincs jelen, helyesebben: eddig még nem sikerült gyűjteni. A Helconini tribust 3 génsz (zárójelben a bakonyi fajok száma): Aspicolpus WESMAEL (2), Helcon NEES (3) és Helconidea VIERECK (1) (idevágóan lásd előző közleményemben a Helconinae-t is: PAPP 1973), a Diospilini tribust pedig ugyancsak 3 génsz: Baecicus FORSTER (1), Diospilus HALIDAY (5) és Taphaeus WESMAEL (1) képviseli. Összesítve a bakonyi helkonín génszok száma 6 és a fajok száma pedig 13, azaz a hazai génszok 66,6 %-a ill. a hazai fajok kereken 50 %-a mutatható ki a Bakony faunatáján.
Aspicolpus WESMAEL, 1838

– Magyarországon a csesznek in kívül csak a Mátrából ismerjük két lelőhelyről (PAPP 1998).
Hazánkon kívül négy palearktíkumi országból tudunk előfordulásáról: Svédország, Svájc, Irán és Oroszország (Kamcsatka).

Aspicolpus carinator (NEES, 1812) (=Diospilus maximus SZÉPLIGETI, 1900) – ÉB: 1 ♀:
Bakonybél, Gerence-völgy, Urtica urens-ról hálózva, 1959. V. 20. PJ; 1 ♀: Bakonybél,
Királykapu, tölgy-rönkről hálózva, 1959. V. 21. PJ; 1 ♀: Bakonybél, Vörös János séd,

Helcon NEES, 1812

Helcon angustator NEES, 1812 (=Ichneumon redactor THUNBERG, 1822) – DB: 1 ♀:

Diospilini

Baeacis FÖRSTER, 1858

Diospilus HALIDAY, 1833

Taphaeus WESMAEL, 1835

BRACHISTINAE (=Calyptinae)

Aliolus SAY, 1836

Allodorus FÖRSTER, 1862

Eubazus NEES, 1811

Polydegmon FÜRSTER, 1862

Schizoprymnus FÜRSTER, 1862

Triaspis HALIDAY, 1835

Triaspis thoracicus (Curtis, 1860) – BF: 2 ♂; Gyenesdiás, GyJ – Európában és Magyarországon is gyakori faj; meglepő, hogy a Bakony-hegységben csak egyetlen helyen gyűjöttek, bizonyára még sokfelé fogják gyűjteni faunatájunkon. A veteményes zöldborsó zsírsik kártevőinek (Bruchus és Bruchidius fajok) egyik gyakorlati szempontból is potenciális parazitoidja (PAPP 1994b).

CHELONINAE

A gyilkosfürkészek (Braconidae) családján belül a Cheloniae fajokat egységesen jellemzi az, hogy potrohuk erősen kitinizálódott. Az erős kitinizálódás a Phanerotoma és a Phaneromella fajokon úgy mutatkozik meg, hogy a potroh első három hátlemez (tergite) két varrat alatt még elülnül egymástól (a többi szelvény pedig az első három alá tológott); az Ascogaster, a Chelonus és a Microchelonus fajokon pedig az első három hátlemez összeforr (azaz a varratok vagy közel teljesen vagy teljesen eltűntek) és ezáltal a potroh zsákzerűvé formálódott (ezért neveztem el az alcsaládot zsákpotrohú gyilkosfürkészeknek a Móczár-féle Allathatározó 1969. évi 2. kiadásában).

A hazai Cheloniae fajok száma összesen 120 (PAPP 1996b), a Bakony-hegységben is élő fajok száma pedig ennek éppen a fele, azaz 60. Mindkét fajszám a jövőben a kutatások nyomán befolyásolható. A hazai fajok között a következőképpen oszlik meg (zárójelben a magyarországi fajok száma):

Ascogaster	16	(21)
Chelonus	23	(37)
Microchelonus	14	(49)
Phanerotoma	6	(11)
Phaneromella	1	(1)
Összesen:	60	(120)

Ascogaster Wesmael, 1835

Huddleston 1984-ben revidáltja a palearktikus Ascogaster fajokat, a kereken 30 faj közül 4 bizonyult újnak a tudomány számára. Két évvel később Tobias (1986) tekintette át a volt Szovjetunió európai területének Ascogaster fajait messzemenően figyelembe véve Huddleston monografijáját; öt új fajával 35-re növelte a palearktikus Ascogaster fajok számát. A 35 faj közül 21 került elő Magyarország ill. 16 a Bakony-hegység faunájában (a hazai fajok 76 %-a).

Ascogaster annularis (Nees, 1816) – BF: 2 ♂ + 1 ♂: Tihany, Csúc-hegy, 1 ♂ + 1 ♂: 1967. VI. 22. ML, 1 ♂: 1967. VII. 5. ML; 1 ♀: Várpalota, Pétfürdő, Chaerophyllum bulbo-

Chelonus Jurine, 1801

Oroszország és Svájc. A magyar faunára nézve a közelmúltban bizonyult újnak (PAPP 1996b).

Microchelonus SZÉPLIGETI, 1908

(=Chelonella Szépligeti, 1908)

Microchelonus erosus (HERRICH-SCHAEFFER, 1838) (=*Chelonus Chelonella hungaricus* Szépligeti, 1896; =*M. analipennis* FAHRINGER, 1934; =*M. frivaldszkyi* SHENEFELT, 1973) –

Phanerotoma WESMAEL, 1838

Phanerotoma (Bracotritoma) bilinea LYLE, 1924 (=Ph. gregori ŠNOFLÁK, 1951) – KB: 1♀ + 1♂; Bodajk, Gaja-szurdok, 1962. VIII. 7. PJ – VIII. – Bár Európa számos országából kimutatták, Magyarországon meglehetősen ritka; összesen négy lelőhelyét közölték (PAPP 1996b).

Phanerotoma (Phanerotoma) fracta KOKUJEV, 1903 – BF: 1 ♀; Tihany, Külső-tó, 1972. VII. 19. TS; 1 ♀ + 1♂; Vászoly, 1982. VI. 27. PA – VI-VII. – Palearktikus elterjedésű faj, Magyarországon a Nagyalföldön (I/1 Eupannonicum) gyakori, a többi faunajárásban jobbára szórványosan gyűjtőtünk (PAPP 1996b).

Phanerotomella SZÉPLIGETI, 1900

SIGALPHINAE

Acamptis WESMAEL, 1835

Összefoglalás

Irodalom

TOBIAS, V. I. (1972): Contributions to the knowledge of the subgenus Chelonus s. str. of the USSR and nearby territories. – Horae Societatis Entomologicae Unioionis Sovieticae 55: 284-299.

A szerző címé (Author’s address): Dr. PAPP Jenő
Magyar Természettudományi Múzeum
H-1431 Budapest, Pf. 137
Abstract: The amphibian Diptera fauna of the Kis-Balaton’s second recultivation period, put together after the research of 2002. In the year of 2002, upon the commission of the Directorate of the Balaton Upland National Park the author studied the amphibian (living in aquatic and moist habitats) Diptera fauna of the Kis-Balaton. Similar work was carried out in 1999, as also from 1993 to 1997 to explore the Culicidae fauna of the reservoir. Reports were published yearly as well as a short communication at the end of the project (TÓTH 1996). During the collecting work in 2002 a total of 112 species was recovered belonging to 9 families. Owing to their comaparative scarceness the following species should particularly be mentioned: Ptychoptera albimana (FABRICIUS, 1787), Uranotaenia unguiculata EDWARDS, 1913, Oxycera nigricornis OLIVIER, 1812, Anasimya contracta CLAUSSEN & TORP, 1980, Melanogaster hirtella (LOEW, 1843).

Bevezetés

A rendkívül változatos fejlődésű és életmódú, a biomassza tekintélyes hányadát kitevő, a természetben nagy egyedszámban jelenlévő kétszárnyúak lárvái és imágói fontos szerepet töltenek be mind a vízi, mind a szárazföldi ökoszisztémák anyagforgalmában, illetőleg a táplálékláncban.

Magyarországon jelenleg egyetlen kétszárnyú faj sem védett. Ez azonban nem jelenti azt, hogy ezeknek a rovaroknak nincs természetvédelmi jelentősége, illetőleg esetenként ne szorulnának védelemre. A vizes élőhelyek életében közismert az árvaszúnyogok (Chironomidae) szerepe. Azonban a kétszárnyú családok más tagjainak lárvái (bábjai) is nagyon fontosak az anyag- és energiaforgalom különböző folyamataiban, pl. a korhadékok lebontásában, részben a víz tisztításában, továbbá a táplálékláncban is. Számos vízhez kötődő gerinctelen és gerinces táplálkozik amfibikus kétszárnyúak lárvájával és bábjával. A vízből kirepült imágóiknak főleg a parti nádas, sásos övben és a vízzel érintkező szárazföldi sávban van nagy jelentősége. Egyéb rovarok mellett a kétszárnyúak alkotják a szárazföldi rovar-biomassza tetemes részét, helyileg akár 70–80%-át, belőlük tevődik ki a különböző ragadozó rovarok, énekesmadarak, kétéltűek, rovarevő emlősök fő tápláléka.
Természetesen nem hallgathatjuk el, hogy a Balaton-medence részét képező Kis-Balatonon is a kétszárnyúak közül kerülnek ki az ember és az emlősállatok zaklatásában kisebb-nagyobb szerepet játszó csípőszúnyogok (Culicidae) és bögölyök (Tabanidae).

A kétszárnyúak jelentősége családonként változik, témánk szempontjából a legnagyobb szerepe kétségtelenül az árvaszúnyogoknak (Chironomidae) van. Erre a Kis-Balaton esetében elsősorban Szitó András (Szitó 1996), a Balaton és a Zala vonatkozásában, pedig Dévai György és munkatársai hívják fel a figyelmet (Dévai et al. 1984a, 1984b). Dévai György és munkatársai a balatoni nyíltvízi üledéklakó árvaszúnyog lárvák vizsgálata kapcsán megállapították, hogy az árvaszúnyogok évente akár 100 tonna foszfort is képesek eltávolitani a Balatonból.

A fentiek ellenére, a Balaton-medence kétszárnyú fauna és bogyonya feltételezése (eltekintve a csípőszúnyogoktól és bizonyos mértékig az árvaszúnyogoktól) az elmúlt évekig a hazai zoológiai kutatásokhoz egyik viszonylag elhanyagolt területe volt.

Anyag és módszer

A vizsgálat során alapvető cél volt annak bizonyítása, hogy a szóban forgó taxonok lárvája valóban a Kis-Balaton vizes közegében él. Ezért a téma szempontjából csak a "kétéltű", ún. amfibikus szervezetek jöhettek számításba, melyek lárvális fejlődési szakaszukat vízben (iszapban, nedves parti talajban, esetleg a locsolási öv nedves törmelékében, uszadékban, vízi növényekben aknázva, vízi csigák testében) töltik. Az esetek nagyobb részében nem elegendő csupán a mintavételi helyen rajzó imágók gyűjtése. Igazolni kell, hogy a gyűjtött imágók lárvái az adott helyen található víztérben fejlődtek ki. Ez elsősorban kirepülés-csapdák alkalmazásával, valamint lárvákat (és babókat) tartalmazó minták laboratóriumban való kinevelésével történhet. Korlátozott mértékben szóba jöhet továbbá a gyűjtött lárvák meghatározása is.

Alapvető mintavételi eszköz 2002-ben a vízi háló, a kétszárnyúak fogására átalakított lepkeháló, a fűháló (kaszálóháló), valamint elsősorban csípőszúnyog imágók gyűjtésére szolgáló szippantó-cső volt. Kisebb mértékben sor került Malaise-csapda, valamint kirepülés-csapda alkalmazására is.

A mintavételek április és augusztus között havonta két-két napon, szeptember és októberben egy-egy napon történtek.

A kétszárnyúak hosszabb távú kutatása esetén, a fauna általános felmérése mellett, a Kis-Balaton II. ütemén is időszerű lenne olyan taxonokat kiválasztani, melyek monitorozásra alkalmasak. Ilyen, pl. Mansonia richiardii (Tóth 1991).

A mintavételek céljára kijelölt pontokat táblázatos összeállítás tartalmazza. A térinformatikai munkát segítségével a területet lefedő 25 ezres méretarányú katonai térképlevel alapján meghatározott földrajzi koordináták, továbbá a 2,5x2,5 km-es négyzeteknek megfelelő bontásban az UTM-kóddal is.
Eredmények

Az évi munka eredményeképpen, a Kis-Balaton II. ütemének ismert kétszárnyú faunáját 2002-ben, 9 családhoz tartozó 112 Diptera faj alkotja. Ez a szám azonban nem tartalmazza a korábbról már ismertté vált árvaszúnyogokat (SZÍTÓ 1996), valamint a faunából az előző évek során kimutatott, azonban 2002-ben nem gyűjtött fajokat. A mintavételek során begyűjtött (kinevelt) kétszárnyú anyag példányszáma meghaladja az 5 ezret (5155 pld.). A vizsgált anyag mintavételi helyenkénti mennyiségi megoszlását oszlopdiagram (1. ábra) szemlélteti.

<table>
<thead>
<tr>
<th>S. sz.</th>
<th>Mintavételi hely</th>
<th>Földrajzi hosszúság</th>
<th>Földrajzi szélesség</th>
<th>UTM kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Diás-sziget (Keszthely)</td>
<td>17° 13' 55"</td>
<td>46° 40' 45"</td>
<td>XM 67 C3</td>
</tr>
<tr>
<td>II.</td>
<td>Egyes-terelőtöltés vége (Zalavár)</td>
<td>17° 12' 15"</td>
<td>46° 50' 50"</td>
<td>XM 67 C1</td>
</tr>
<tr>
<td>III.</td>
<td>Gölyás-berek (Főnyed)</td>
<td>17° 14' 45"</td>
<td>46° 38' 20"</td>
<td>XM 76 B1</td>
</tr>
<tr>
<td>IV.</td>
<td>Ingói-berek (Keszthely)</td>
<td>17° 13' 20"</td>
<td>46° 50' 30"</td>
<td>XM 67 C3</td>
</tr>
<tr>
<td>V.</td>
<td>Kettes-terelőtöltés (Balatonmagyaród)</td>
<td>17° 12' 45"</td>
<td>46° 36' 00"</td>
<td>XM 66 D3</td>
</tr>
<tr>
<td>VI.</td>
<td>Zalavári-víz (Zalavár)</td>
<td>17° 13' 15"</td>
<td>46° 39' 55"</td>
<td>XM 67 C3</td>
</tr>
</tbody>
</table>

1. ábra: A Kis-Balaton II. ütemén 2002-ben gyűjtött Diptera anyag mintavételi helyek (I–VI.) szerinti mennyiségi összetétele

Bizonyos mértékig jellemző képet mutat a Kis-Balaton II. ütemén gyűjtött anyag feldolgozása alapján a csípőszúnyog populáció-kollektívum szezonális alakulása. Az erre vonatkozó vonaldiagramon (2. ábra) jól látható a júliusi csúcs után augusztusban egy jelentős visszaesés. Ennek magyarázata csak részben kereshető abban, hogy erre az időszakra esik a csípőszúnyog-biomassza fő tömegét adó mocsári szúnyog (Mansonia
richiardii) imágók megfogyatkozása. A jelenséghez nagy mértékben hozzájárult az, hogy az aszályos időjárás miatt főleg a kisebb tenyészőhelyek többsége nyár derekára kiszáradt, ezért a nyáron is szaporodó egyéb szúnyogfajok egyedszáma is erősen lecsökkent. A szeptemberi emelkedés pedig már az augusztus végi esőzések nyomán keletkezett tenyészőhelyekkel függ össze.

Jelentős különbségek tapasztalhatók az egyes családokhoz tartozó egyedszámokban (3. ábra). Ebből a szempontból a csípőszúnyogok (Culicidae) foglalják el az első helyet, ezek teszik ki a teljes anyag több mint egyharmadát (38%). Viszonylag jelentős a részesedése a zengőlegyeknek (kereken 21%). Csaknem azonos a tömegrendezésedés a lószúnyogoknak (8,83%), az iszapszúnyogoknak (8,49%) és a csigalegyeknek (7,64%). Ugyancsak közel azonos arányban szerepelnek a katonalegyek (6,94%) és a bökölyök (6,11%). A többi családhoz képest viszonylag magas tömegrendezésedést értek el a területen csupán két-két fajjal képezelt redős szúnyogok (1,74%), valamint a bojtos szúnyogok (1,29%). Az utóbbiak anyagát szinte teljes egészében a gyűjtött lárvák teszik ki.
A 2002-ben kimutatott fajok jegyzéke

A felsorolás tartalmazza a fajonkénti példányszámot, a teljes anyagból való %-os részesedést, majd római számok jelzik azokat a mintavételi helyeket, ahol a taxon előkerült.

FONALAS CSÁPÚAK (NEMATOCERA)

Lószúnyogok (Tipulidae)

1. **Nigrotipula nigra** (LINNAEUS, 1758) (66 pld., 1,28%, I, III-VI.)
2. **Tipula caesia** SCHUMMEL, 1833 (70 pld., 1,36%, I-VI.)
3. **Tipula fulvipennis** DE GEER, 1776 (7 pld., 0,13%, I.)
4. **Tipula lateralis** MEIGEN, 1804 (82 pld., 1,59%, I-VI.)
5. **Tipula luna** WESTHOFF, 1879 (11 pld., 0,21%, I, III-VI.)
6. **Tipula luteipennis** MEIGEN, 1830 (2 pld., 0,04%, VI.)
7. **Tipula oleracea** LINNAEUS, 1758 (84 pld., 1,63%, II-III, V-VI.)
8. **Tipula orientalis** LACKSCHEWITZ, 1930 (38 pld., 0,74%, I-VI.)
9. **Tipula paludosa** MEIGEN, 1830 (95 pld., 1,84%, I-VI.)

Iszapszúnyogok (Limoniidae)

1. **Dicranomyia frontalis** (STAEGER, 1840) (24 pld., 0,46%, I-V.)
2. **Dicranomyia fusca** (MEIGEN, 1804) (5 pld., 0,10%, I, V)
3. **Dicranomyia mitis** (MEIGEN, 1830) (51 pld., 0,29%, I, V-VI.)
4. **Epiphragma ocellare** (LINNAEUS, 1761) (26 pld., 0,50%, I, III-V.)
5. **Eutonia barbipes** (MEIGEN, 1804) (22 pld., 0,47%, I, III-VI.)
6. **Helius longirostris** (MEIGEN, 1818) (22 pld., 0,47%, I, III-VI.)
7. **Limnophila pictipennis** (MEIGEN, 1818) (58 pld., 1,12%, I-VI.)
8. **Limnophila schranki** OOSTERBROEK, 1992 (30 pld., 0,58%, I, III, V-VI.)
9. **Molophilus obscurus** (MEIGEN, 1818) (80 pld., 1,55%, I-VI.)
10. **Phylidorea ferruginea** (MEIGEN, 1818) (16 pld., 0,31%, I, IV-VI.)
11. **Pseudolimnophila lucorum** (MEIGEN, 1818) (35 pld., 0,68%, I, III-VI.)
12. **Symplecta stictica** (MEIGEN, 1818) (105 pld., 2,04%, I-VI.)

Redős szúnyogok (Ptychopteridae)

1. **Ptychoptera contaminata** (LINNAEUS, 1758) (84 pld., 1,63%, I-VI.)
2. **Ptychoptera albimana** (FABRICIUS, 1787) (6 pld., 0,12%, I, V-VI.)

Bojtos szúnyogok (Chaoboridae)

1. **Chaoborus crystallinus** (DE GEER, 1776) (57 pld., 1,10%, I-VI.)
2. **Chaoborus pallidus** (FABRICIUS, 1794) (10 pld., 0,19%, I, V-VI.)

Csípőszúnyogok (Culicidae)

1. **Aedes annulipes** (MEIGEN, 1830) (200 pld., 3,88%, I-VI.)
2. **Aedes cantans** (MEIGEN, 1818) (11 pld., 0,21%, I, IV.)
3. **Aedes caspius** (PALLAS, 1771) (74 pld., 1,43%, I, III-V)
4. **Aedes cataphylla** DYAR, 1916 (38 pld., 0,74%, I, V-VI.)
5. **Aedes cinereus** MEIGEN, 1818 (56 pld., 1,09%, I-VI.)
6. **Aedes excrucians** WALKER, 1856 (6 pld., 0,12%, I, IV-V.)
7. **Aedes flavescens** (MÜLLER, 1764) (15 pld., 0,29%, I, III.)
8. *Aedes geniculatus* OLIVIER, 1791 (2 pld., 0,04%, I, IV.)
9. *Aedes rusticus* (ROSSI, 1790) (20 pld., 0,39%, I, III-IV)
10. *Aedes sticticus* (MEIGEN, 1838) (36 pld., 0,70%, I-III, V)
11. *Aedes vexans* (MEIGEN, 1830) (228 pld., 4,42%, I-VI.)
12. *Anopheles atroparvus* VAN THIEL, 1927 (3 pld., 0,06%, III.)
13. *Anopheles claviger* (MEIGEN, 1804) (57 pld., 1,10%, I-VI.)
14. *Anopheles hyrcanus* (PALLAS, 1771) (4 pld., 0,08%, V)
15. *Anopheles maculipennis* MEIGEN, 1818 (97 pld., 1,88%, I-VI.)
16. *Culex modestus* FICALBI, 1890 (139 pld., 2,70%, I-II, IV-VI.)
17. *Culex pipiens* LINNAEUS, 1758 (534 pld., 10,36%, I-VI.)
18. *Culex territorans* WALKER, 1856 (20 pld., 0,39%, IV-VI.)
19. *Culiseta annulata* (SCHRANK, 1776) (89 pld., 1,73%, I-VI.)
20. *Culiseta morsitans* THEOBALD, 1901 (16 pld., 0,31%, I, IV-VI.)
22. *Uranotaenia unguiculata* EDWARDS, 1913 (10 pld., 0,19%, I, V.)

RÖVID CSÁPÚAK (BRACHYCERA)

Katonalegyek (*Stratiomyidae*)
1. *Chloromyia formosa* (SCOPOLI, 1763) (27 pld., 0,52%, I, IV-V)
2. *Nemotelus nigrinus* FALLÉN, 1817 (5 pld., 0,09%, V)
3. *Nemotelus pantherinus* (LINNAEUS, 1758) (46 pld., 0,89%, I, III, V-VI.)
4. *Odontomyia argentata* (FABRICIUS, 1794) (4 pld., 0,08%, I, V)
5. *Odontomyia hydroleon* (LINNAEUS, 1758) (13 pld., 0,25%, I, V-VI.)
6. *Odontomyia ornata* (MEIGEN, 1822) (4 pld., 0,08%, I, V)

Bögölyök (*Tabanidae*)
1. *Atylotus rusticus* (LINNÉ, 1767) (37 pld., 0,72%, I, III-VI.)
2. *Atylotus fulvus* (MEIGEN, 1820) (2 pld., 0,04%, III, V)
3. *Chrysops caecutiens* (LINNAEUS, 1758) (16 pld., 0,31%, I, IV-VI.)
4. *Chrysops relictus* MEIGEN, 1820 (11 pld., 0,21%, III-V)
5. *Chrysops viduatus* (FABRICIUS, 1794) (33 pld., 0,64%, I, III-VI.)
6. *Haematopota italica* MEIGEN, 1804 (2 pld., 0,04%, I, IV)
7. *Haematopota pluvialis* (LINNAEUS, 1758) (94 pld., 1,82%, I-VI.)
8. *Heptatoma pellucens* (FABRICIUS, 1776) (1 pld., 0,02%, V)
9. *Hybomitra ciureai* (SÉGUY, 1937) (27 pld., 0,52%, I-VI.)
10. *Tabanus autumnalis* LINNAEUS, 1761 (5 pld., 0,10%, I, III, V)
11. *Tabanus bovinus* LINNAEUS, 1758 (6 pld., 0,12%, I, II, IV-VI.)
12. *Tabanus bromius* LINNAEUS, 1758 (65 pld., 1,26%, I-VI.)
13. *Tabanus maculicornis* ZETTERSTEDT, 1842 (13 pld., 0,25%, I-VI.)
14. *Therioplectes gigas* (HERBST, 1787) (3 pld., 0,06%, I, V)
Zengőlegyek (Syrphidae)

1. *Anasimyia contracta* Clausen & Torp, 1980 (5 pld., 0,10%, V-VI.)
2. *Anasimyia interpuncta* (Harris, 1776) (1 pld., 0,02%, VI.)
3. *Anasimyia lineata* (Fabricius, 1787) (59 pld., 1,44%, I-VI.)
4. *Anasimyia transfiga* (Linnaeus, 1758) (37 pld., 0,72%, I-VI.)
5. *Chrysogaster lucida* (Scopoli, 1763) (27 pld., 0,52%, I, IV-V.)
6. *Chrysogaster solstitialis* (Fallén, 1817) (5 pld., 0,10%, I, III, V.)
8. *Eristalis interrupta* (Poda, 1761) (11 pld., 0,21%, III, IV-V)
9. *Eristalis intricaria* (Linnaeus, 1758) (2 pld., 0,04%, V)
10. *Eristalis pertinax* (Scopoli, 1763) (9 pld., 0,17%, II-IV)
11. *Eristalis tenax* (Linnaeus, 1758) (130 pld., 2,52%, I-VI.)
12. *Eristalinus aeneus* (Scopoli, 1763) (31 pld., 0,60%, I-VI.)
14. *Helophilus pendulus* (Linnaeus, 1758) (83 pld., 1,61%, I-VI.)
15. *Helophilus trivittatus* (Fabricius, 1805) (33 pld., 0,64%, I-VI.)
16. *Lejogaster tarsata* (Meigen, 1822) (6 pld., 0,12%, I, VI.)
17. *Lejops viptata* (Meigen, 1822) (18 pld., 0,35%, III-VI.)
18. *Melanogaster hirtella* (Loew, 1843) (1 pld., 0,02%, I.)
19. *Mesembrius peregrinus* (Loew, 1846) (9 pld., 0,17%, I-III, IV-V)
20. *Neoascia annexa* (Müller, 1776) (32 pld., 0,62%, I-II, IV-VI.)
21. *Neoascia interrupta* (Meigen, 1822) (72 pld., 1,40%, I-VI.)
22. *Neoascia obliqua* Coe, 1940 (93 pld., 1,80%, I-VI)
23. *Neoascia podagrica* (Fabricius, 1775) (161 pld., 3,12%, I-VI.)
24. *Neoascia tenur* (Harris, 1780) (18 pld., 0,35%, I, III, V.)
25. *Orthonevra nobilis* (Fallén, 1817) (11 pld., 0,21%, I, III-VI.)
26. *Parhelophilus versicolor* (Fabricius, 1794) (99 pld., 1,92%, I-VI.)

Csigalegyek (Sciomyzidae)

1. *Calobaea distincta* (Meigen, 1830) (25 pld., 0,48%, I-IV, VI.)
2. *Dictya umbrarum* (Linnaeus, 1758) (23 pld., 0,45%, I, IV, VI.)
3. *Hydromya dorsalis* (Fabricius, 1775) (39 pld., 0,76%, I-VI.)
4. *Pherbellia cinerella* (Fallén, 1820) (69 pld., 1,34%, I-V)
5. *Pherbellia griseola* (Fallén, 1820) (34 pld., 0,66%, I-III, V-VI.)
6. *Pherbellia grisescens* (Meigen, 1830) (60 pld., 1,16%, I, III-VI.)
7. *Pherbina coryleti* (Scopoli, 1763) (29 pld., 0,25%, I-III, V-VI.)
8. *Psacadina vittigera* (Schiner, 1864) (11 pld., 0,21%, I, III, IV, VI.)
9. *Sepedon sphegea* (Fabricius, 1775) (9 pld., 0,17%, III-V)
10. *Sepedon spinipes* (Scopoli, 1763) (42 pld., 0,81%, I, IV-VI.)
11. *Tetanocera ferruginea* (Fallén, 1817) (39 pld., 0,76%, II, III-VI.)

Következtetések, javaslatok

Az amfibikus kétszárnyúak (ezen belül elsősorban a csípőszúnyogok és a böögölyök) a Kis-Balaton II. ütemén végzett kutatása jelentős mértékben hozzájárul a hazai Diptera-fauna állat- és humánegészségügyi adatbázisának kiépítéséhez.
A tározó vizes élőhelyeinek értékes amfibikus kétszárnyú (de általában rovar) faunájának megőrzése érdekében célszerű lenne gondoskodni a terület mélyebb fekvésű részein az állandó vízborítás fenntartásáról.

Irodalom

A szerző címe (Author’s address): Dr. TÓTH Sándor
H–8420 Zirc
Széchenyi u. 2.
A Bakonyi Természettudományi Múzeum Közleményei
FOLIA MUSEI HISTORICO-NATURALIS BAKONYIENSIS

Útmutató a szerzők számára

A Folia Bakonyiensis elsősorban a Bakonyvidék természettudományos feltárására irányuló közleményeket jelentet meg. A kiadvány elsődleges célja a tájegység természeti képének minél alaposabb megismeretése, természettödőrajzi, földtani, őslénytani, botanikai, zoológiai, ill. kapcsolódó tudományterületek eredményeinek közlésével.

A folyóirat nyelve magyar, a cikkek angol nyelvű összefoglalóval jelennek meg. Eseti megítélés alapján angol ill. német nyelvű kéziratot is elfogadunk. Az angol nyelvű összefoglaló elkészítése a szerző feladata.

A kéziratot digitális és nyomtatott formában egyaránt kérjük benyújtani. Az illusztrációkat kérjük a nyomtatott változatban is szerepelteni (a World-be illesztve vagy jelezni a helyét a kéziratban), másrészt kérjük külön is, a következők szerint:

1. A fotók lehetőleg jó minőségű papírképek, színes diapozitívok vagy digitális képek legyenek (tif vagy jpeg formátumban, min. 300 dpi felbontásban).
2. Térképek, térképvázlatok esetén szintén jó minőségű grafikák, illetve digitális ábrák jelenthetők meg.
3. Rajzok, diagramok stb. esetén is vagy az eredeti ábrát, vagy a digitális változatot kérjük külön fájlban mellékelve (tif vagy jpeg formátumban, min. 300 dpi felbontásban).

Az illusztrációk elkészítésénél törekedjenek a jó minőségen kívül arra is, hogy lehetőleg fekete-fehérben is értelmezhető ábrák készüljenek, mert az anyagi lehetőségeink nem mindig engedik meg, hogy színes ívek kerüljenek be a kötetbe.

A kézirat kötelező részei:
1. Cím
2. Szerző(k), postacímmel, esetleg e-mail-lel, munkahellyel
3. Angol nyelvű összefoglaló
4. Bevezetés, előzmények
5. Eredmények és értékelésük
6. Irodalomjegyzék
7. Ábrák, fényképek és magyarázataik (ábraaláírás)

Az irodalomjegyzék elkészítésénél felhívjuk a szerzők figyelmét, hogy a magyar folyóiratok nevét teljes egészében írják ki, a többinél a szabályos rövidítést alkalmazzák. A beérkező kéziratok lektorálása a kiadó feladata. A lektorált munkákat a szerkesztő a szerző(k) részére visszaküldi, aki a lektorok által kért változtatások végrehajtását követően a megjelentetni kívánt változatot a kiadóhoz visszajuttatja.

e-mail: btmtz@bakonymuseum.koznet.hu
A BAKONYI TERMÉSZETTUDOMÁNYI MÚZEUM ÉS JOGELŐDJE ÁLTAL MEGJELENTETETT, TERMÉSZETTUDOMÁNYOS CIKKEKET TARTALMAZÓ MÚZEUMI ÉVKÖNYVEK JEGYZÉKE

A Veszprém megyei Múzeumok Közleményei
/Publicationes Museorum Comitatis Vesprimiensis/
Veszprém

1. 1963. 367 p. (vegyes – miscellaneous), elfogyott – out of print
2. 1964. 480 p. (vegyes – miscellaneous), elfogyott – out of print
5. 1966. 394 p. (vegyes – miscellaneous), elfogyott – out of print
7. 1968. 468 p. (természettudomány – natural sciences)

A Veszprém megyei Múzeumok Közleményei - Természettudomány
/Publicationes Museorum Comitatis Vesprimiensis/
Rerum Naturalis
Veszprém – Zirc

A Bakonyi Természettudományi Múzeum Közleményei
/Folia Musei Historico-naturalis Bakonyiensis/
Zirc

8. 1989. 110 p. (elfogyott)
15. 1996. 159 p.
MONOGRÁFIA-SOROZAT

A Bakony természettudományi kutatásának eredményei
(Resultationes investigationum rerum naturalium montium Bakony)
Zirc – Veszprémi.

A kiadványok megvásárolhatók a Bakonyi Természettudományi Múzeumban:
8420 Zirc, Rákóczi tér 1. Pf. 36
Telefon: 88/575-300
E-mail: btmz@bakonymuseum.koznet.hu